

CONTACT admin@openconnectivity.org
Copyright OCF © 2019. All Rights Reserved.

OCF Bridging Specification

VERSION 2.0.1 | February 11, 2019

mailto:admin@openconnectivity.org

Copyright Open Connectivity Foundation, Inc. © 2016-19. All rights Reserved

Legal Disclaimer 3
4

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY 5
KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY 6
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR 7
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED 8
ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, 9
THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER 10
WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT 11
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF 12
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY 13
FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-14
INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 15

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other 16
countries. *Other names and brands may be claimed as the property of others. 17

18 Copyright © 2016-19 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited 19

20

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved

25

CONTENTS 26

1 Scope .. 1 27

2 Normative references .. 1 28

3 Terms, definitions, and abbreviated terms ... 2 29

3.1 Terms and definitions.. 2 30

3.2 Abbreviated terms ... 4 31

4 Document conventions and organization .. 5 32

4.1 Conventions .. 5 33

4.2 Notation .. 5 34

5 OCF Bridge device .. 6 35

5.1 Introduction ... 6 36

5.2 Symmetric vs. asymmetric bridging ... 7 37

5.3 General requirements ... 9 38

5.4 Resource discovery .. 9 39

5.5 “Deep translation” vs. “on-the-fly” .. 14 40

5.6 Use of introspection .. 15 41

5.7 Stability and loss of data ... 15 42

5.8 Security .. 15 43

5.8.1 General Security Requirements ... 15 44

5.8.2 Blocking communication of Bridged Devices with the OCF ecosystem 16 45

6 AllJoyn translation ... 17 46

6.1 Operational scenarios ... 17 47

6.2 Requirements specific to an AllJoyn translator .. 17 48

6.2.1 Introduction ... 17 49

6.2.2 Exposing AllJoyn producer devices to OCF clients ... 17 50

6.2.3 Exposing OCF resources to AllJoyn consumer applications 25 51

6.3 On-the-Fly Translation from D-Bus and OCF payloads .. 31 52

6.3.1 Introduction ... 31 53

6.3.2 Translation without aid of introspection .. 32 54

6.3.3 Translation with aid of introspection ... 37 55

7 Device type definitions .. 42 56

8 Resource type definitions .. 43 57

8.1 List of resource types .. 43 58

8.2 AllJoyn Object ... 43 59

8.2.1 Introduction ... 43 60

8.2.2 Example URI ... 43 61

8.2.3 Resource type ... 43 62

8.2.4 OpenAPI 2.0 definition ... 43 63

8.2.5 Property definition ... 47 64

8.2.6 CRUDN behaviour ... 47 65

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved

8.3 Secure Mode .. 48 66

8.3.1 Introduction ... 48 67

8.3.2 Example URI ... 48 68

8.3.3 Resource type ... 48 69

8.3.4 OpenAPI 2.0 definition ... 48 70

8.3.5 Property definition ... 50 71

8.3.6 CRUDN behaviour ... 50 72

73
74

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved

Figures 75

Figure 1 – OCF Bridge Device components... 6 76

Figure 2 – Schematic overview of an OCF Bridge Device bridging non-OCF devices 7 77

Figure 3 – Asymmetric server bridge ... 8 78

Figure 4 – Asymmetric client bridge .. 8 79

Figure 5 – /oic/res example response ... 14 80

Figure 6 – Payload Chain. ... 15 81

 82

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved

Tables 83

Table 1 – AllJoyn Translator Interaction List ... 15 84

Table 2 – AllJoyn to OCF Name Examples .. 18 85

Table 3 – oic.wk.d resource type definition ... 20 86

Table 4 – oic.wk.con resource type definition .. 22 87

Table 5 – oic.wk.p resource type definition ... 23 88

Table 6 – oic.wk.con.p resource type definition ... 25 89

Table 7 – Example name mapping .. 26 90

Table 8 – AllJoyn about data fields ... 27 91

Table 9 – AllJoyn configuration data fields .. 30 92

Table 10 – Boolean translation ... 32 93

Table 11 – Numeric type translation, D-Bus to JSON .. 32 94

Table 12 – Numeric type translation, JSON to D-Bus .. 33 95

Table 13 – Text string translation .. 33 96

Table 14 – Byte array translation .. 33 97

Table 15 – D-Bus variant translation ... 33 98

Table 16 – D-Bus object path translation .. 34 99

Table 17 – D-Bus structure translation .. 34 100

Table 18 – Byte array translation .. 34 101

Table 19 – Other array translation .. 34 102

Table 20 – JSON array translation .. 35 103

Table 21 – D-Bus dictionary translation ... 35 104

Table 22 – Non-translation types .. 35 105

Table 23 – D-Bus to JSON translation examples ... 36 106

Table 24 – JSON to D-Bus translation examples ... 37 107

Table 25 – JSON type to D-Bus type translation ... 39 108

Table 26 – D-Bus type to JSON type translation ... 39 109

Table 27 – Text string translation .. 40 110

Table 28 – JSON UUID string translation .. 40 111

Table 29 – D-Bus variant translation ... 40 112

Table 30 – D-Bus object path translation .. 40 113

Table 31 – Mapping from AllJoyn using introspection .. 41 114

Table 32 – Mapping from CBOR using introspection ... 42 115

Table 33 – Device type definitions .. 43 116

Table 34 – Alphabetical list of resource types ... 43 117

Table 35 – The Property definitions of the Resource with type 'rt' = ['oic.r.alljoynobject', 118
'oic.wk.col'] ... 47 119

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved

Table 36 – The CRUDN operations of the Resource with type 'rt' = ['oic.r.alljoynobject', 120
'oic.wk.col'] ... 47 121

Table 37 – The Property definitions of the Resource with type 'rt' = ['oic.r.securemode'] 50 122

Table 38 – The CRUDN operations of the Resource with type 'rt' = ['oic.r.securemode'] 51 123

124

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 1

1 Scope 125

This document specifies a framework for translation between OCF Devices and other ecosystems, 126
and specifies the behaviour of a translator that exposes servers in non-OCF ecosystem to OCF 127
Clients and/or exposes OCF Servers to clients in non-OCF ecosystem. Translation per specific 128
Device is left to other specification (deep translation). This document provides generic 129
requirements that apply unless overridden by a more specific document. 130

2 Normative references 131

The following documents are referred to in the text in such a way that some or all of their content 132
constitutes requirements of this document. For dated references, only the edition cited applies. For 133
undated references, the latest edition of the referenced document (including any amendments) 134
applies. 135

AllJoyn About Interface Specification, About Feature Interface Definitions, Version 14.12 136
https://allseenalliance.org/framework/documentation/learn/core/about-announcement/interface 137

AllJoyn Configuration Interface Specification, Configuration Interface Definition, Version 14.12 138
https://allseenalliance.org/framework/documentation/learn/core/configuration/interface 139

D-Bus Specification, D-Bus Specification 140
https://dbus.freedesktop.org/doc/dbus-specification.html 141

IEEE 754, IEEE Standard for Floating-Point Arithmetic, August 2008 142
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933 143

IETF RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, July 2005 144
https://www.rfc-editor.org/info/rfc4122 145

IETF RF 4648, The Base16, Base32 and Base64 Data Encodings, October 2006 146
https://www.rfc-editor.org/info/rfc4648 147

IETF RFC 6973, Privacy Considerations for Internet Protocols, July 2013 148
https://www.rfc-editor.org/info/rfc6973 149

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014 150
https://www.rfc-editor.org/info/rfc7159 151

JSON Schema Core, JSON Schema: core definitions and terminology, January 2013 152
http://json-schema.org/latest/json-schema-core.html 153

JSON Schema Validation, JSON Schema: interactive and non-interactive validation, January 2013 154
http://json-schema.org/latest/json-schema-validation.html 155

JSON Hyper-Schema, JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON, 156
October 2016 157
http://json-schema.org/latest/json-schema-hypermedia.html 158

ISO/IEC 30118-1:2018 Information technology -- Open Connectivity Foundation (OCF) 159
Specification -- Part 1: Core specification 160
https://www.iso.org/standard/53238.html 161
Latest version available at: https://openconnectivity.org/specs/OCF_Core_Specification.pdf 162

ISO/IEC 30118-2:2018 Information technology -- Open Connectivity Foundation (OCF) 163
Specification -- Part 2: Security specification 164
https://www.iso.org/standard/74239.html 165
Latest version available at: https://openconnectivity.org/specs/OCF_Security_Specification.pdf 166

https://allseenalliance.org/framework/documentation/learn/core/about-announcement/interface
https://allseenalliance.org/framework/documentation/learn/core/configuration/interface
https://dbus.freedesktop.org/doc/dbus-specification.html
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7159
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-validation.html
http://json-schema.org/latest/json-schema-hypermedia.html
https://www.iso.org/standard/53238.html
https://openconnectivity.org/specs/OCF_Core_Specification.pdf
https://www.iso.org/standard/74239.html
https://openconnectivity.org/specs/OCF_Security_Specification.pdf

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 2

ISO/IEC 30118-6:2018 Information technology -- Open Connectivity Foundation (OCF) 167
Specification -- Part 6: Resource to AllJoyn interface mapping specification 168
https://www.iso.org/standard/74243.html 169
Latest version available at: 170
https://openconnectivity.org/specs/OCF_Resource_to_AllJoyn_Interface_Mapping_v1.0.0.pdf 171

OpenAPI Specification, Version 2.0 172
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md 173

3 Terms, definitions, and abbreviated terms 174

3.1 Terms and definitions 175

For the purposes of this document, the terms and definitions given in ISO/IEC 30118-1:2018 and 176
the following apply. 177

ISO and IEC maintain terminological databases for use in standardization at the following 178
addresses: 179
– ISO Online browsing platform: available at https://www.iso.org/obp 180

– IEC Electropedia: available at http://www.electropedia.org/ 181

3.1.1 182
Asymmetric Client Bridge 183
an asymmetric client bridge exposes another ecosystem clients into the OCF ecosystem as Virtual 184
OCF Clients (3.1.20). This is equivalent to exposing OCF Servers (3.1.15) into the other ecosystem. 185
How this is handled in each ecosystem is specified on a per ecosystem basis in this document. 186

3.1.2 187
Asymmetric Server Bridge 188
an asymmetric server bridge exposes another ecosystem devices into the OCF ecosystem as 189
Virtual OCF Servers (3.1.23). How this is handled in each ecosystem is specified on a per 190
ecosystem basis in this document. 191

3.1.3 192
Bridged Client 193
logical entity that accesses data via a Bridged Protocol (3.1.5). For example, an AllJoyn Consumer 194
application is a Bridged Client 195

3.1.4 196
Bridged Device 197
Bridged Client (3.1.3) or Bridged Server (3.1.8). 198

3.1.5 199
Bridged Protocol 200
another protocol (e.g., AllJoyn) that is being translated to or from OCF protocols 201

3.1.6 202
Bridged Resource 203
represents an artefact modelled and exposed by a Bridged Protocol (3.1.5), for example an AllJoyn 204
object is a Bridged Resource. 205

3.1.7 206
Bridged Resource Type 207
schema used with a Bridged Protocol (3.1.5), for example AllJoyn Interfaces are Bridged Resource 208
Types. 209

https://www.iso.org/standard/74243.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.iso.org/obp
http://www.electropedia.org/

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 3

 210

3.1.8 Bridged Server 211
logical entity that provides data via a Bridged Protocol (3.1.5), for example an AllJoyn Producer is 212
a Bridged Server. More than one Bridged Server can exist on the same physical platform. 213

3.1.9 214
OCF Bridge Device 215
OCF Device (3.1.11) that can represent devices that exist on the network but communicate using 216
a Bridged Protocol (3.1.5) rather than OCF protocols. 217

3.1.10 218
OCF Client 219
logical entity that accesses an OCF Resource (3.1.12) on an OCF Server (3.1.15), which might be 220
a Virtual OCF Server (3.1.23) exposed by the OCF Bridge Device (3.1.9) 221

3.1.11 222
OCF Device 223
logical entity that assumes one or more OCF roles (OCF Client (3.1.10), OCF Server (3.1.15). More 224
than one OCF Device can exist on the same physical platform. 225

3.1.12 226
OCF Resource 227
represents an artefact modelled and exposed by the OCF Framework 228

3.1.13 229
OCF Resource Property 230
significant aspect or notion including metadata that is exposed through the OCF Resource (3.1.12) 231

3.1.14 232
OCF Resource Type 233
OCF Resource Property (3.1.13) that represents the data type definition for the OCF Resource 234
(3.1.12) 235

3.1.15 236
OCF Server 237
logical entity with the role of providing resource state information and allowing remote control of its 238
resources 239

3.1.16 240
Symmetric, Asymmetric Bridging 241
in symmetric bridging, a bridge device exposes OCF Server(s) (3.1.15) to another ecosystem and 242
exposes other ecosystem’s server(s) to OCF. In asymmetric bridging, a bridge device exposes 243
OCF Server(s) (3.1.15) to another ecosystem or exposes another ecosystem’s server(s) to OCF, 244
but not both. 245

3.1.17 246
Translator 247
OCF Bridge Device (3.1.9) component that is responsible for translating to or from a specific 248
Bridged Protocol (3.1.5). More than one translator can exist on the same OCF Bridge Device (3.1.9), 249
for different Bridged Protocols (3.1.5). 250

3.1.18 251
Virtual Bridged Client 252
logical representation of an OCF Client (3.1.10), which an OCF Bridge Device (3.1.9) exposes to 253
Bridged Servers (3.1.8). 254

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 4

3.1.19 255
Virtual Bridged Server 256
logical representation of an OCF Server (3.1.15), which an OCF Bridge Device (3.1.9) exposes to 257
Bridged Clients (3.1.3). 258

3.1.20 259
Virtual OCF Client 260
logical representation of a Bridged Client (3.1.3), which an OCF Bridge Device (3.1.9) exposes to 261
OCF Servers (3.1.15) 262

3.1.21 263
Virtual OCF Device 264
Virtual OCF Client (3.1.20) or Virtual OCF Server (3.1.23). 265

3.1.22 266
Virtual OCF Resource 267
logical representation of a Bridged Resource (3.1.6), which an OCF Bridge Device (3.1.9) exposes 268
to OCF Clients (3.1.10) 269

3.1.23 270
Virtual OCF Server 271
logical representation of a Bridged Server (3.1.8), which an OCF Bridge Device (3.1.9) exposes to 272
OCF Clients (3.1.10). 273

3.2 Abbreviated terms 274

3.2.1 275
CRUDN 276
Create, Read, Update, Delete, and Notify 277

3.2.2 278
CSV 279
Comma separated value 280

 281

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 5

4 Document conventions and organization 282

4.1 Conventions 283

In this document a number of terms, conditions, mechanisms, sequences, parameters, events, 284
states, or similar terms are printed with the first letter of each word in uppercase and the rest 285
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal 286
technical English meaning 287

4.2 Notation 288

In this document, features are described as required, recommended, allowed or DEPRECATED as 289
follows: 290

Required (or shall or mandatory). 291

– These basic features shall be implemented to comply with OIC Core Architecture. The phrases 292
“shall not”, and “PROHIBITED” indicate behaviour that is prohibited, i.e. that if performed means 293
the implementation is not in compliance. 294

Recommended (or should). 295

– These features add functionality supported by OIC Core Architecture and should be 296
implemented. Recommended features take advantage of the capabilities OIC Core Architecture, 297
usually without imposing major increase of complexity. Notice that for compliance testing, if a 298
recommended feature is implemented, it shall meet the specified requirements to be in 299
compliance with these guidelines. Some recommended features could become requirements in 300
the future. The phrase “should not” indicates behaviour that is permitted but not recommended. 301

Allowed (or allowed). 302

– These features are neither required nor recommended by OIC Core Architecture, but if the 303
feature is implemented, it shall meet the specified requirements to be in compliance with these 304
guidelines. 305

– Conditionally allowed (CA)The definition or behaviour depends on a condition. If the specified 306
condition is met, then the definition or behaviour is allowed, otherwise it is not allowed. 307

Conditionally required (CR) 308

– The definition or behaviour depends on a condition. If the specified condition is met, then the 309
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 310
unless specifically defined as not allowed. 311

DEPRECATED 312

– Although these features are still described in this document, they should not be implemented 313
except for backward compatibility. The occurrence of a deprecated feature during operation of 314
an implementation compliant with the current document has no effect on the implementation’s 315
operation and does not produce any error conditions. Backward compatibility may require that 316
a feature is implemented and functions as specified but it shall never be used by 317
implementations compliant with this document. 318

Strings that are to be taken literally are enclosed in “double quotes”. 319

Words that are emphasized are printed in italic. 320

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 6

5 OCF Bridge device 321

5.1 Introduction 322

This clause describes the functionality of an OCF Bridge Device; such a device is illustrated in 323
Figure 1. 324

Bridged
Client

OCF
Server

OCF
Client

Bridged
Server

Virtual
OCF

Server

OCF
Protocol

Bridged
Protocol

Virtual
Bridged
Client

Translator

Bridged
Protocol

OCF
Protocol

Virtual
OCF

Client

Virtual
Bridged
Server

OCF Bridge Device

 325

Figure 1 – OCF Bridge Device components 326

An OCF Bridge Device is a device that represents one or more Bridged Devices as Virtual OCF 327
Devices on the network and/or represents one or more OCF Devices as Virtual Devices using 328
another protocol on the network. The Bridged Devices themselves are out of the scope of this 329
document. The only difference between a native OCF Device and a Virtual Bridged Device is how 330
the device is encapsulated in an OCF Bridge Device. 331

An OCF Bridge Device shall be indicated on the OCF Security Domain with a Device Type of 332
“oic.d.bridge”. This provides to an OCF Client an explicit indication that the discovered Device is 333
performing a bridging function. This is useful for several reasons; 1) when establishing a home 334
network, the Client can determine that the bridge is reachable and functional when no bridged 335
devices are present, 2) allows for specific actions to be performed on the bridge considering the 336
known functionality a bridge supports, 3) allows for explicit discovery of all devices that are serving 337
a bridging function which benefits trouble shooting and maintenance actions on behalf of a user. 338
When such a device is discovered the exposed Resources on the OCF Bridge Device describe 339
other devices. For example, as shown in Figure 2. 340

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 7

OCF Bridge Device

Virtual OCF Server 1
(oic.d.fan)

Virtual OCF Server 2
(oic.d.light)

Virtual OCF Server 3
(oic.d.light)

OCF facing

Light 2

Light 1

Fan

Bridged Devices

 341

Figure 2 – Schematic overview of an OCF Bridge Device bridging non-OCF devices 342

It is expected that the OCF Bridge Device creates a set of devices during the start-up of the OCF 343
Bridge Device. The exposed set of Virtual OCF Devices can change as Bridged Devices are added 344
or removed from the bridge. The adding and removing of Bridged Devices is implementation 345
dependent. When an OCF Bridge Device changes the set of exposed Virtual OCF Devices, it shall 346
notify any OCF Clients subscribed to its “/oic/res”. 347

5.2 Symmetric vs. asymmetric bridging 348

There are two kinds of bridging: Symmetric, Asymmetric. In symmetric bridging, a bridge device 349
exposes OCF server(s) to another ecosystem and exposes other ecosystem’s server(s) to OCF. In 350
asymmetric bridging, a bridge device exposes OCF server(s) to another ecosystem or exposes 351
another ecosystem’s server(s) to OCF, but not both. The former case is called an Asymmetric 352
Server Bridge (see Figure 3), the latter case is called an Asymmetric Client Bridge (see Figure 4) 353

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 8

OCF
Client #1

Bridged
Server #1

Virtual OCF
Server #1

OCF
Protocol

Bridged
Protocol

Virtual
Bridged
Client(s)

Translator

OCF Bridge Device

Bridged
Server #2

Bridged
Protocol

Virtual OCF
Server #2

OCF
Protocol

Not in scope
of OCF Bridging spec

OCF
Client #2

OCF
Protocol

 354

Figure 3 – Asymmetric server bridge 355

In Figure 3 each Bridged Server is exposed as a Virtual OCF Server to OCF side. These Virtual 356
OCF Servers are same as normal OCF Servers except that they have additional rt value 357
(“oic.d.virtual”) for “/oic/d”. The details of the Virtual Bridged Client are not in scope of this 358
document. 359

 360

OCF Bridge Device

Virtual OCF Client
(Aligned to:

RW ACL on Server #1)

Virtual OCF Client
(Aligned to:

RO ACL on Server #1,
RW ACL on Server #2)

Translator

OCF
Server #1

Bridged Client #3
(Read-Only Server #1)

Bridged Client #2
(Read-Write Server #1)

Bridged Client #1
(Read-Write Server #1)

Virtual
Bridged

Server(s)

Not in scope
of OCF Bridging spec

OCF
Server #2

 361

Figure 4 – Asymmetric client bridge 362

Figure 4 shows that each access to the OCF Server is modelled as a Virtual OCF Client. Those 363
accesses can be aggregated if their target OCF servers and access permissions are same, 364
therefore a Virtual OCF Client can tackle multiple Bridged Clients. 365

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 9

5.3 General requirements 366

The translator shall check the protocol-independent UUID (“piid” in OCF) of each device and shall 367
not advertise back into a Bridged Protocol a device originally seen via that Bridged Protocol. The 368
translator shall stop translating any Bridged Protocol device exposed in OCF via another translator 369
if the translator sees the device via the Bridged Protocol. Similarly, the translator shall not 370
advertise an OCF Device back into OCF, and the translator shall stop translating any OCF device 371
exposed in the Bridged Protocol via another translator if the translator sees the device via OCF. 372
These require that the translator can determine when a device is already being translated. A Virtual 373
OCF Device shall be indicated on the OCF Security Domain with a Device Type of “oic.d.virtual”. 374
This allows translators to determine if a device is already being translated when multiple translators 375
are present. How a translator determines if a device is already being translated on a non-OCF 376
Security Domain is described in the protocol-specific clauses (e.g. clause 6). 377

The translator shall detect duplicate virtual devices (with the same protocol-independent UUID) 378
present in a network and shall not create more than one corresponding virtual device as it translates 379
those duplicate devices into another network. 380

Each Bridged Server shall be exposed as a separate Virtual OCF Server, with its own OCF Endpoint, 381
and its own “/oic/d” and “/oic/p”. The Virtual OCF Server’s “/oic/res” resource would be the same 382
as for any ordinary OCF Server that uses a resource directory. That is, it does not respond to 383
multicast discovery requests (because the OCF Bridge Device responds on its behalf), but a unicast 384
query elicits a response listing its own resources with a “rel=hosts” relationship, and an appropriate 385
“anchor” to indicate that it is not the OCF Bridge Device itself. This allows platform-specific, device-386
specific, and resource-specific fields to all be preserved across translation. 387

The introspection data provided by the translator shall include information about all the virtual 388
devices (and their resources) exposed by the translator at that point in time. This means that the 389
introspection data provided by the translator before and after a new virtual device is exposed would 390
be different. 391

5.4 Resource discovery 392

An OCF Bridge Device shall detect devices that arrive and leave the Bridged network or the OCF 393
Security Domain. Where there is no pre-existing mechanism to reliably detect the arrival and 394
departure of devices on a network, an OCF Bridge Device shall periodically poll the network to 395
detect arrival and departure of devices, for example using COAP multicast discovery (a multicast 396
RETRIEVE of “/oic/res”) in the case of the OCF Security Domain. OCF Bridge Device 397
implementations are encouraged to use a poll interval of 30 seconds plus or minus a random delay 398
of a few seconds. 399

An OCF Bridge Device shall respond to network discovery commands on behalf of the exposed 400
bridged devices. All bridged devices with all their Resources shall be listed in “/oic/res” of the 401
Bridge. The response to a RETRIEVE on “/oic/res” shall only include the devices that match the 402
RETRIEVE request. 403

The resource reference determined from each Link exposed by “/oic/res” on the Bridge shall be 404
unique. The Bridge shall meet the requirements defined in ISO/IEC 30118-1:2018 for population of 405
the Properties and Link parameters in “/oic/res”. 406

For example, if an OCF Bridge Device exposes Virtual OCF Servers for the fan and lights shown 407
in Figure 2, the bridge might return the example payload in Figure 5 to a Client doing a RETRIEVE 408
on “/oic/res”. (Note that what is returned is not in the JSON format but in a suitable encoding as 409
defined in ISO/IEC 30118-1:2018) 410

Figure 5 illustrates that each Virtual OCF Server has its own “di” and OCF Endpoint exposed by 411
the bridge, and that “/oic/p” and “/oic/d” are available for each Virtual OCF Server. 412

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 10

[413
 { 414
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 415
 "href": "/oic/res", 416
 "rel": "self", 417
 "rt": ["oic.wk.res"], 418
 "if": ["oic.if.ll", "oic.if.baseline"], 419
 "p": {"bm": 3}, 420
 "eps": [{"ep": "coap://[2001:db8:a::b1d4]:55555"}, 421
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 422
 }, 423
 { 424
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 425
 "href": "/oic/d", 426
 "rt": ["oic.wk.d", "oic.d.bridge"], 427
 "if": ["oic.if.r", "oic.if.baseline"], 428
 "p": {"bm": 3}, 429
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 430
 }, 431
 { 432
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 433
 "href": "/oic/p", 434
 "rt": ["oic.wk.p"], 435
 "if": ["oic.if.r", "oic.if.baseline"], 436
 "p": {"bm": 3}, 437
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 438
 }, 439
 { 440
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 441
 "href": "/oic/sec/doxm", 442
 "rt": ["oic.r.doxm"], 443
 "if": ["oic.if.baseline"], 444
 "p": {"bm": 1}, 445
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 446
 }, 447
 { 448
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 449
 "href": "/oic/sec/pstat", 450
 "rt": ["oic.r.pstat"], 451
 "if": ["oic.if.baseline"], 452
 "p": {"bm": 1}, 453
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 454
 }, 455
 { 456
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 457
 "href": "/oic/sec/cred", 458
 "rt": ["oic.r.cred"], 459
 "if": ["oic.if.baseline"], 460
 "p": {"bm": 1}, 461
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 462
 }, 463
 { 464
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 465
 "href": "/oic/sec/acl2", 466
 "rt": ["oic.r.acl2"], 467
 "if": ["oic.if.baseline"], 468
 "p": {"bm": 1}, 469
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 470
 }, 471
 { 472
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 473
 "href": "/myIntrospection", 474

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 11

 "rt": ["oic.wk.introspection"], 475
 "if": ["oic.if.r", "oic.if.baseline"], 476
 "p": {"bm": 3}, 477
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}] 478
 }, 479
 480
 481
 { 482
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 483
 "href": "/oic/res", 484
 "rt": ["oic.wk.res"], 485
 "if": ["oic.if.ll", "oic.if.baseline"], 486
 "p": {"bm": 3}, 487
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 488
 }, 489
 { 490
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 491
 "href": "/oic/d", 492
 "rt": ["oic.wk.d", "oic.d.fan", "oic.d.virtual"], 493
 "if": ["oic.if.r", "oic.if.baseline"], 494
 "p": {"bm": 3}, 495
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 496
 }, 497
 { 498
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 499
 "href": "/oic/p", 500
 "rt": ["oic.wk.p"], 501
 "if": ["oic.if.r", "oic.if.baseline"], 502
 "p": {"bm": 3}, 503
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 504
 }, 505
 { 506
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 507
 "href": "/myFan", 508
 "rt": ["oic.r.switch.binary"], 509
 "if": ["oic.if.a", "oic.if.baseline"], 510
 "p": {"bm": 3}, 511
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 512
 }, 513
 { 514
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 515
 "href": "/oic/sec/doxm", 516
 "rt": ["oic.r.doxm"], 517
 "if": ["oic.if.baseline"], 518
 "p": {"bm": 1}, 519
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 520
 }, 521
 { 522
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 523
 "href": "/oic/sec/pstat", 524
 "rt": ["oic.r.pstat"], 525
 "if": ["oic.if.baseline"], 526
 "p": {"bm": 1}, 527
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 528
 }, 529
 { 530
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 531
 "href": "/oic/sec/cred", 532
 "rt": ["oic.r.cred"], 533
 "if": ["oic.if.baseline"], 534
 "p": {"bm": 1}, 535
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 536

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 12

 }, 537
 { 538
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 539
 "href": "/oic/sec/acl2", 540
 "rt": ["oic.r.acl2"], 541
 "if": ["oic.if.baseline"], 542
 "p": {"bm": 1}, 543
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 544
 }, 545
 { 546
 "anchor": "ocf://88b7c7f0-4b51-4e0a-9faa-cfb439fd7f49", 547
 "href": "/myFanIntrospection", 548
 "rt": ["oic.wk.introspection"], 549
 "if": ["oic.if.r", "oic.if.baseline"], 550
 "p": {"bm": 3}, 551
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:22222"}] 552
 }, 553
 554
 { 555
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 556
 "href": "/oic/res", 557
 "rt": ["oic.wk.res"], 558
 "if": ["oic.if.ll", "oic.if.baseline"], 559
 "p": {"bm": 3}, 560
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 561
 }, 562
 { 563
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 564
 "href": "/oic/d", 565
 "rt": ["oic.wk.d", "oic.d.light", "oic.d.virtual"], 566
 "if": ["oic.if.r", "oic.if.baseline"], 567
 "p": {"bm": 3}, 568
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 569
 }, 570
 { 571
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 572
 "href": "/oic/p", 573
 "rt": ["oic.wk.p"], 574
 "if": ["oic.if.r", "oic.if.baseline"], 575
 "p": {"bm": 3}, 576
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 577
 }, 578
 { 579
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 580
 "href": "/myLight", 581
 "rt": ["oic.r.switch.binary"], 582
 "if": ["oic.if.a", "oic.if.baseline"], 583
 "p": {"bm": 3}, 584
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 585
 }, 586
 { 587
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 588
 "href": "/oic/sec/doxm", 589
 "rt": ["oic.r.doxm"], 590
 "if": ["oic.if.baseline"], 591
 "p": {"bm": 1}, 592
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 593
 }, 594
 { 595
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 596
 "href": "/oic/sec/pstat", 597
 "rt": ["oic.r.pstat"], 598

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 13

 "if": ["oic.if.baseline"], 599
 "p": {"bm": 1}, 600
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 601
 }, 602
 { 603
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 604
 "href": "/oic/sec/cred", 605
 "rt": ["oic.r.cred"], 606
 "if": ["oic.if.baseline"], 607
 "p": {"bm": 1}, 608
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 609
 }, 610
 { 611
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 612
 "href": "/oic/sec/acl2", 613
 "rt": ["oic.r.acl2"], 614
 "if": ["oic.if.baseline"], 615
 "p": {"bm": 1}, 616
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 617
 }, 618
 { 619
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 620
 "href": "/myLightIntrospection", 621
 "rt": ["oic.wk.introspection"], 622
 "if": ["oic.if.r", "oic.if.baseline"], 623
 "p": {"bm": 3}, 624
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:33333"}] 625
 }, 626
 627
 { 628
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 629
 "href": "/oic/res", 630
 "rt": ["oic.wk.res"], 631
 "if": ["oic.if.ll", "oic.if.baseline"], 632
 "p": {"bm": 3}, 633
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 634
 }, 635
 { 636
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 637
 "href": "/oic/d", 638
 "rt": ["oic.wk.d", "oic.d.light", "oic.d.virtual"], 639
 "if": ["oic.if.r", "oic.if.baseline"], 640
 "p": {"bm": 3}, 641
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 642
 }, 643
 { 644
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 645
 "href": "/oic/p", 646
 "rt": ["oic.wk.p"], 647
 "if": ["oic.if.r", "oic.if.baseline"], 648
 "p": {"bm": 3}, 649
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 650
 }, 651
 { 652
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 653
 "href": "/myLight", 654
 "rt": ["oic.r.switch.binary"], 655
 "if": ["oic.if.a", "oic.if.baseline"], 656
 "p": {"bm": 3}, 657
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 658
 }, 659
 { 660

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 14

 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 661
 "href": "/oic/sec/doxm", 662
 "rt": ["oic.r.doxm"], 663
 "if": ["oic.if.baseline"], 664
 "p": {"bm": 1}, 665
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 666
 }, 667
 { 668
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 669
 "href": "/oic/sec/pstat", 670
 "rt": ["oic.r.pstat"], 671
 "if": ["oic.if.baseline"], 672
 "p": {"bm": 1}, 673
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 674
 }, 675
 { 676
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 677
 "href": "/oic/sec/cred", 678
 "rt": ["oic.r.cred"], 679
 "if": ["oic.if.baseline"], 680
 "p": {"bm": 1}, 681
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 682
 }, 683
 { 684
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 685
 "href": "/oic/sec/acl2", 686
 "rt": ["oic.r.acl2"], 687
 "if": ["oic.if.baseline"], 688
 "p": {"bm": 1}, 689
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 690
 }, 691
 { 692
 "anchor": "ocf://8202138e-aa22-452c-b512-9ebad02bef7c", 693
 "href": "/myLightIntrospection", 694
 "rt": ["oic.wk.introspection"], 695
 "if": ["oic.if.r", "oic.if.baseline"], 696
 "p": {"bm": 3}, 697
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:44444"}] 698
 } 699
] 700

Figure 5 – /oic/res example response 701

5.5 “Deep translation” vs. “on-the-fly” 702

When translating a service between a Bridged Protocol (e.g., AllJoyn) and OCF protocols, there 703
are two possible types of translation. Translators are expected to dedicate most of their logic to 704
“deep translation” types of communication, in which data models used with the Bridged Protocol 705
are mapped to the equivalent OCF Resource Types and vice-versa, in such a way that a compliant 706
OCF Client or Bridged Client would be able to interact with the service without realising that a 707
translation was made. 708

“Deep translation” is out of the scope of this document, as the procedure far exceeds mapping of 709
types. For example, clients on one side of a translator may decide to represent an intensity as an 710
8-bit value between 0 and 255, whereas the devices on the other may have chosen to represent 711
that as a floating-point number between 0.0 and 1.0. It’s also possible that the procedure may 712
require storing state in the translator. Either way, the programming of such translation will require 713
dedicated effort and study of the mechanisms on both sides. 714

The other type of translation, the “on-the-fly” or “one-to-one” translation, requires no prior 715
knowledge of the device-specific schema in question on the part of the translator. The burden is, 716

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 15

instead, on one of the other participants in the communication, usually the client application. That 717
stems from the fact that “on-the-fly” translation always produces Bridged Resource Types and OCF 718
Resource Types as vendor extensions. 719

For AllJoyn, deep translation is specified in ISO/IEC 30118-6:2018, and on-the-fly translation is 720
covered in clause 7.2 of this document. 721

5.6 Use of introspection 722

Whenever possible, the translation code should make use of metadata available that indicates what 723
the sender and recipient of the message in question are expecting. For example, devices that are 724
AllJoyn Certified are required to carry the introspection data for each object and interface they 725
expose. When the metadata is available, translators should convert the incoming payload to exactly 726
the format expected by the recipient and should use information when translating replies to form a 727
more useful message. 728

For example, for an AllJoyn translator, the expected interaction list is presented in Table 1. 729

Table 1 – AllJoyn Translator Interaction List 730

Message Type Sender Receiver Metadata

Request AllJoyn 16.10 OCF 1.0 Available

Request OCF 1.0 AllJoyn 16.10 Available

Response AllJoyn 16.10 OCF 1.0 Available

Response OCF 1.0 AllJoyn 16.10 Available

5.7 Stability and loss of data 731

Round-tripping through the translation process specified in this document is not expected to 732
reproduce the same original message. The process is, however, designed not to lose data or 733
precision in messages, though it should be noted that both OCF and AllJoyn payload formats allow 734
for future extensions not considered in this document. 735

However, a third round of translation should produce the same identical message as was previously 736
produced, provided the same information is available. That is, in the chain shown in Figure 6, 737
payloads 2 and 4 as well as 3 and 5 should be identical. 738

 739

Figure 6 – Payload Chain. 740

5.8 Security 741

5.8.1 General Security Requirements 742

The OCF Bridge Device shall go through OCF ownership transfer as any other onboardee would. 743
Separately, it shall go through the Bridged Protocol’s ownership transfer mechanism (e.g., AllJoyn 744
claiming) normally as any other onboardee would. 745

The OCF Bridge Device shall be field updatable. 746

Unless an administrator opts in to allow it (see 8.2), a translator shall not expose connectivity to 747
devices to which it cannot get a secure connection. 748

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 16

Each Virtual OCF Device shall be provisioned for security by an OCF Onboarding tool. Each Virtual 749
Bridged Device should be provisioned as appropriate in the Bridged ecosystem. In other words, 750
Virtual Devices are treated the same way as physical Devices. They are entities that have to be 751
provisioned in their network. 752

The Translator shall provide a “piid” value that can be used to correlate a non-OCF Device with its 753
corresponding Virtual OCF Device, as specified in 5.3. An Onboarding Tool might use this 754
correlation to improve the Onboarding user experience by eliminating or reducing the need for user 755
input, by automatically creating security settings for Virtual OCF Devices that are equivalent to the 756
security settings of their corresponding non-OCF Devices. See ISO/IEC 30118-2:2018 for detailed 757
information about Onboarding. 758

Each Virtual Device shall implement the security requirements of the ecosystem that it is connected 759
to. For example, each Virtual OCF Device shall implement the behaviour required by ISO/IEC 760
30118-1:2018 and ISO/IEC 30118-2:2018. Each Virtual OCF Device shall perform authentication, 761
access control, and encryption according to the security settings it received from the Onboarding 762
Tool. 763

Depending on the architecture of the Translator, authentication and access control might take place 764
just within each ecosystem, but not within the Translator. For example, when an OCF Client sends 765
a request to a Virtual OCF Server: 766

– Authentication and access control might be performed by the Virtual OCF Server when receiving 767
the request from the OCF Client. 768

– The Translator might not perform authentication or access control when the request travels 769
through the Translator to the corresponding Virtual Bridged Client. 770

– Authentication and access control might be performed by the target Bridged Server when it 771
receives the request from the Virtual Bridged Client, according to the security model of the 772
Bridged ecosystem. 773

A Translator may receive unencrypted data coming from a Bridged Client through a Virtual Bridged 774
Device. The translated message shall be encrypted by the corresponding Virtual OCF Client, before 775
sending it to the target OCF Device, if this OCF Device requires encryption. 776

A Translator may receive unencrypted data coming from an OCF Client through a Virtual OCF 777
Server. After translation, this data shall be encrypted by the corresponding Virtual Bridged Client, 778
before sending it to the target Bridged Server, if this Bridged Server requires encryption. 779

A Translator shall protect the data while that data travels between a Virtual Client and a Virtual 780
Server, through the Translator. For example, if the Translator sends data over a network, the 781
Translator shall perform appropriate authentication and access control, and shall encrypt the data, 782
between all peers involved in this communication. 783

5.8.2 Blocking communication of Bridged Devices with the OCF ecosystem 784

An OCF Onboarding Tool shall be able to block the communication of all OCF Devices with all 785
Bridged Devices that don’t communicate securely with the Bridge, by using the Bridge Device’s 786
“oic.r.securemode” Resource. 787

In addition, an OCF Onboarding Tool can block the communication of a particular Virtual OCF 788
Client with all OCF Servers, or block the communication of all OCF Clients with a particular Virtual 789
OCF Server, in the same way as it would for any other OCF Device. See ISO/IEC 30118-2:2018 790
for information about the soft reset state. 791

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 17

6 AllJoyn translation 792

6.1 Operational scenarios 793

The overall goals are to: 794

1) make Bridged Servers appear to OCF clients as if they were native OCF servers, and 795

2) make OCF servers appear to Bridged Clients as if they were native non-OCF servers. 796

6.2 Requirements specific to an AllJoyn translator 797

6.2.1 Introduction 798

The translator shall be an AllJoyn Router Node. (This is a requirement so that users can expect 799
that a certified OCF Bridge Device will be able to talk to any AllJoyn device, without the user having 800
to buy some other device.) 801

The requirements in clause 6.2 apply when using algorithmic translation, and by default apply to 802
deep translation unless the relevant clause for such deep translation specifies otherwise. 803

6.2.2 Exposing AllJoyn producer devices to OCF clients 804

6.2.2.1 Virtual OCF Devices and Resources 805

As specified in ISO/IEC 30118-2:2018 the value of the “di” property of OCF Devices (including 806
Virtual OCF Devices) shall be established as part of Onboarding of that Virtual OCF Device. 807

Each AllJoyn object shall be mapped to one or more Virtual OCF Resources. If all AllJoyn 808
interfaces can be translated to resource types on the same resource, there should be a single 809
Virtual OCF Resource, and the path component of the URI of the Virtual OCF Resource shall be 810
the AllJoyn object path, where each “_h” in the AllJoyn object path is transformed to “-” (hyphen), 811
each “_d” in the AllJoyn object path is transformed to “.” (dot), each “_t” in the AllJoyn object path 812
is transformed to “~” (tilde), and each “_u” in the AllJoyn object path is transformed to “_” 813
(underscore). Otherwise, a Resource with that path shall exist with a Resource Type of 814
[“oic.wk.col”, “oic.r.alljoynobject”] which is a Collection of links, where “oic.r.alljoynobject” is 815
defined in clause 8.2 and the items in the collection are the Resources with the translated Resource 816
Types. 817

The value of the “piid” property of “/oic/d” for each Virtual OCF Device shall be the value of the 818
OCF-defined AllJoyn field “org.openconnectivity.piid” in the AllJoyn About Announce signal, if that 819
field exists, else it shall be calculated by the Translator as follows: 820

– If the AllJoyn device supports security, the value of the “piid” property value shall be the peer 821
GUID. 822

– If the AllJoyn device does not support security but the device is being bridged anyway (see 8.2), 823
the “piid” property value shall be derived from the DeviceId and AppId properties (in the About 824
data), by concatenating the DeviceId value (not including any null termination) and the AppId 825
bytes and using the result as the “name” to be used in the algorithm specified in IETF RFC 4122 826
clause 4.3, with SHA-1 as the hash algorithm, and 8f0e4e90-79e5-11e6-bdf4-0800200c9a66 827
as the name space ID. (This is to address the problem of being able to de-duplicate AllJoyn 828
devices exposed via separate OCF Bridge Devices.) 829

A translator implementation is encouraged to listen for AllJoyn About Announce signals matching 830
any AllJoyn interface name. It can maintain a cache of information it received from these signals, 831
and use the cache to quickly handle “/oic/res” queries from OCF Clients (without having to wait for 832
Announce signals while handling the queries). 833

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 18

A translator implementation is encouraged to listen for other signals (including 834
EmitsChangedSignal of properties) only when there is a client subscribed to a corresponding 835
resource on a Virtual AllJoyn Device. 836

There are multiple types of AllJoyn interfaces, which shall be handled as follows. 837

1) If the AllJoyn interface is in a well-defined set (defined in ISO/IEC 30118-6:2018 or 6.2.2.2) of 838
interfaces where standard forms exist on both the AllJoyn and OCF sides, the translator shall 839
either: 840

a) follow the specification for translating that interface specially, or 841

b) not translate the AllJoyn interface. 842

2) If the AllJoyn interface is not in the well-defined set, the translator shall either: 843

a) not translate the AllJoyn interface, or 844

b) algorithmically map the AllJoyn interface as specified in 6.3 to custom/vendor-defined 845
Resource Types by converting the AllJoyn interface name to OCF resource type name(s). 846

An AllJoyn interface name shall be converted to a Device Type or a set of one or more OCF 847
Resource Types as follows: 848

1) If the AllJoyn interface has any members, append a suffix “.<seeBelow>” where <seeBelow> is 849
described in this clause. 850

2) For each upper-case letter present in the entire string, replace it with a hyphen followed by the 851
lower-case version of that letter (e.g., convert “A” to “-a”). 852

3) If an underscore appears followed by a (lower-case) letter or a hyphen, for each such 853
occurrence, replace the underscore with two hyphens (e.g., convert “_a” to “--a", “_-a” to “---854
a”). 855

4) For each underscore remaining, replace it with a hyphen (e.g., convert “_1” to “-1”). 856

5) Prepend the “x.” prefix. 857

Some examples are shown in Table 2. The first three are normal AllJoyn names converted to 858
unusual OCF names. The last three are unusual AllJoyn names converted (perhaps back) to 859
normal OCF names. (“xn--” is a normal domain name prefix for the Punycode-encoded form of an 860
Internationalized Domain Name, and hence can appear in a normal vendor-specific OCF name.) 861

Table 2 – AllJoyn to OCF Name Examples 862

From AllJoyn name To OCF name

example.Widget x.example.-widget

example.my__widget x.example.my----widget

example.My_Widget x.example.-my---widget

xn_p1ai.example x.xn--p1ai.example

xn__90ae.example x.xn--90ae.example

example.myName_1 x.example.my-name-1

Each AllJoyn interface that has members and is using algorithmic mapping shall be mapped to one 863
or more Resource Types as follows: 864

– AllJoyn Properties with the same EmitsChangedSignal value are mapped to the same Resource 865
Type where the value of the <seeBelow> label is the value of EmitsChangedSignal. AllJoyn 866
Properties with EmitsChangedSignal values of “const” or “false”, are mapped to Resources that 867
are not Observable, whereas AllJoyn Properties with EmitsChangedSignal values of “true” or 868

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 19

“invalidates” result in Resources that are Observable. The Version property in an AllJoyn 869
interface is always considered to have an EmitsChangedSignal value of “const”, even if not 870
specified in introspection XML. The name of each property on the Resource Type shall be 871
“<ResourceType>.<AllJoynPropertyName>”, where each “_d” in the <AllJoynPropertyName> is 872
transformed to “.” (dot), and each “_h” in the <AllJoynPropertyName> is transformed to “-” 873
(hyphen). 874

– Resource Types mapping AllJoyn Properties with access “readwrite” shall support the “oic.if.rw” 875
OCF Interface. Resource Types mapping AllJoyn Properties with access “read” shall support 876
the “oic.if.r” OCF Interface. Resource Types supporting both the “oic.if.rw” and “oic.if.r” OCF 877
Interfaces shall choose “oic.if.r” as the default Interface. 878

– Each AllJoyn Method is mapped to a separate Resource Type, where the value of the 879
<seeBelow> label is the AllJoyn Method name. The Resource Type shall support the “oic.if.rw” 880
OCF Interface. Each argument of the AllJoyn Method shall be mapped to a separate Property 881
on the Resource Type, where the name of that Property is prefixed with 882
“<ResourceType>arg<#>”, where <#> is the 0-indexed position of the argument in the AllJoyn 883
introspection xml, in order to help get uniqueness across all Resource Types on the same 884
Resource. Therefore, when the AllJoyn argument name is not specified, the name of that 885
property is “<ResourceType>arg<#>”, where <#> is the 0-indexed position of the argument in 886
the AllJoyn introspection XML. In addition, that Resource Type has an extra 887
“<ResourceType>validity” property that indicates whether the rest of the properties have valid 888
values. When the values are sent as part of an UPDATE response, the validity property is true, 889
and any other properties have valid values. In a RETRIEVE (GET or equivalent in the relevant 890
transport binding) response, the validity property is false, and any other properties can have 891
meaningless values. If the validity property appears in an UPDATE request, its value shall be 892
true (a value of false shall result in an error response). 893

– Each AllJoyn Signal (whether sessionless, sessioncast, or unicast) is mapped to a separate 894
Resource Type on an Observable Resource, where the value of the <seeBelow> label is the 895
AllJoyn Signal name. The Resource Type shall support the “oic.if.r” OCF Interface. Each 896
argument of the AllJoyn Signal is mapped to a separate Property on the Resource Type, where 897
the name of that Property is prefixed with “<ResourceType>arg<#>”, where <#> is the 0-indexed 898
position of the argument in the AllJoyn introspection xml, in order to help get uniqueness across 899
all Resource Types on the same Resource. Therefore, when the AllJoyn argument name is not 900
specified, the name of that property is “<ResourceType>arg<#>”, where <#> is the 0-indexed 901
position of the argument in the AllJoyn introspection XML. In addition, that Resource Type has 902
an extra “<ResourceType>validity” property that indicates whether the rest of the properties 903
have valid values. When the values are sent as part of a NOTIFY response, the validity property 904
is true, and any other properties have valid values. In a RETRIEVE (GET or equivalent in the 905
relevant transport binding) response, the validity property is false, and any other properties 906
returned can have meaningless values. This is because in AllJoyn, the signals are 907
instantaneous events, and the values are not necessarily meaningful beyond the lifetime of that 908
message. Note that AllJoyn does have a TTL field that allows store-and-forward signals, but 909
such support is not required in OCF 1.0. We expect that in the future, the TTL may be used to 910
allow valid values in response to a RETRIEVE that is within the TTL. 911

When an algorithmic mapping is used, AllJoyn data types shall be mapped to OCF property types 912
according to 6.3. 913

If an AllJoyn operation fails, the translator shall send an appropriate OCF error response to the 914
OCF client. If an AllJoyn error name is available and does not contain the 915
"org.openconnectivity.Error.Code" prefix, it shall construct an appropriate OCF error message (e.g., 916
diagnostic payload if using CoAP) from the AllJoyn error name and AllJoyn error message (if any), 917
using the form "<error name>: <error message>", with the <error name> taken from the AllJoyn 918
error name field and the <error message> taken from the AllJoyn error message, and the CoAP 919
error code set to an appropriate value (if CoAP is used). If an AllJoyn error name is available and 920

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 20

contains the "org.openconnectivity.Error.Code" prefix, the OCF error message (e.g., diagnostic 921
payload if using CoAP) should be taken from the AllJoyn error message (if any), and the CoAP 922
error code (if CoAP is used) set to a value derived as follows; remove the 923
"org.openconnectivity.Error.Code" prefix, and if the resulting error name is of the form "<#>" where 924
<#> is an error code without a decimal (e.g., "404"), the CoAP error code shall be the error code 925
indicated by the “<#>”. Example: "org.openconnectivity.Error.Code404" becomes "404", which 926
shall result in an error 4.04 for a CoAP transport. 927

6.2.2.2 Exposing an AllJoyn producer application as a Virtual OCF Server 928

Table 3 shows how OCF Device properties, as specified in Table 27 in ISO/IEC 30118-1:2018 shall 929
be derived, typically from fields specified in the AllJoyn About Interface Specification and AllJoyn 930
Configuration Interface Specification. 931

If the AllJoyn About or Config data field has a mapping rule defined (as in Table 3, Table 4, Table 5, 932
and Table 6), the field name shall be translated based on that mapping rule; else if the AllJoyn 933
About or Config data field has a fully qualified name (with a <domain> prefix (such as 934
“com.example”, “org.alljoyn”), the field name shall be translated based on the rules specified in 935
6.2.2 for mapping AllJoyn fields; else, the field shall not be translated as it may be incorrect (error) 936
or it has no valid mapping (such as daemonRealm and passCode). 937

Table 3 – oic.wk.d resource type definition 938

To OCF
Property

title

OCF
Proper

ty
name

OCF Description
OCF

Mand
?

From AJ Field name AJ Description AJ Mand?

(Device)
Name n

Human friendly name
For example, “Bob’s
Thermostat”

Y

AppName
(no exact equivalent
exists)

Application name
assigned by the
app manufacturer
(developer or the
OEM).

Y

Spec
Version icv

Spec version of the
core specification this
device is
implemented to, the
syntax is
"core.major.minor”]

Y (none)
Translator should
return its own
value

Device ID di

Unique identifier for
Device. This value
shall be as defined in
ISO/IEC 30118-
2:2018 for DeviceID.

Y (none)
Use as defined in
ISO/IEC 30118-
2:2018

Protocol-
Independe
nt ID

piid Unique identifier for
OCF Device (UUID) Y

org.openconnectivity.
piid if it exists, else
“Peer GUID” (not in
About, but exposed
by protocol) if
authenticated, else
Hash(DeviceId,AppId
) where the Hash is
done by
concatenating the
Device Id (not
including any null
terminator) and the
AppId and using the
algorithm in
IETF RFC 4122

Peer GUID: The
peer GUID is the
only persistent
identity for a peer.
Peer GUIDs are
used by the
authentication
mechanisms to
uniquely identify a
remote application
instance. The peer
GUID for a remote
peer is only
available if the
remote peer has

Peer
GUID:

conditiona
lly Y

DeviceId:

Y

AppId: Y

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 21

clause 4.3, with
SHA-1.

This means that the
value of di may
change if the
resource is read both
before and after
authentication, in
order to mitigate
privacy concerns
discussed in RFC
6973.

been
authenticated.

DeviceId: Device
identifier set by
platform-specific
means.

AppId: A 128-bit
globally unique
identifier for the
application. The
AppId shall be a
universally unique
identifier as
specified in
IETF RFC 4122.

Data
Model
Version

dmv

Spec version(s) of
the vertical
specifications this
device data model is
implemented to. The
syntax is a comma
separated list of
"<vertical>.major.min
or”]. <vertical> is the
name of the vertical
(i.e. sh for Smart
Home)

Y

Comma separated
list of the Version
property values of
each interface listed
in the
objectDescription
argument of the
Announce signal of
About. In addition to
the mandatory values
specified in ISO/IEC
30118-1:2018,
additional values are
formatted as
"x.<interface
name>.<Version
property value>".

This document
assumes that the
value of the
Version property is
the same as the
value of the
"org.gtk.GDBus.Sin
ce" annotation of
the interface in the
AllJoyn
introspection XML,
and therefore the
value of the
Version property
may be determined
through
introspection
alone.

Note that AllJoyn
specifies that the
default value is 1 if
the
"org.gtk.GDBus.Sin
ce" annotation is
absent.

N, but
required

by IRB for
all

standard
interfaces,

and
absence
can be
used to
imply a

constant
(e.g., 0)

Localized
Description
s

ld

Detailed description
of the Device, in one
or more languages.
This property is an
array of objects
where each object
has a ‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the device
description in the
indicated language.

N Description

Detailed
description
expressed in
language tags as
in RFC 5646.

Y

Software
Version sv Version of the device

software. N SoftwareVersion Software version of
the app. Y

Manufactur
er Name dmn

Name of
manufacturer of the
Device, in one or
more languages.
This property is an
array of objects

N Manufacturer The manufacturer's
name of the app. Y

http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 22

where each object
has a ‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the
manufacturer name
in the indicated
language.

Model
Number dmno

Model number as
designated by
manufacturer.

N ModelNumber The app model
number. Y

 939

In addition, any additional vendor-defined fields in the AllJoyn About data shall be mapped to 940
vendor-defined properties in the OCF Device resource “/oic/d” (which implements the “oic.wk.d” 941
resource type), with a property name formed by prepending “x.” to the AllJoyn field name. 942

Table 4 shows how OCF Device Configuration properties, as specified in Table 22 in ISO/IEC 943
30118-1:2018 shall be derived: 944

Table 4 – oic.wk.con resource type definition 945

To OCF
Property

title

OCF
Property

name
OCF Description OCF

Mand? From AJ Field name AJ Description AJ
Mand?

(Device)
Name n

Human friendly
name
For example,
“Bob’s
Thermostat”

Y
AppName
(no exact equivalent exists)

Application
name assigned
by the app
manufacturer
(developer or
the OEM).

Y

Location loc
Provides location
information
where available.

N
org.openconnectivity.loc (if
it exists, else property shall
be absent)

 N

Location
Name locn

Human friendly
name for location
For example,
“Living Room”.

N
org.openconnectivity.locn (if
it exists, else property shall
be absent)

 N

Currency c

Indicates the
currency that is
used for any
monetary
transactions

N
org.openconnectivity.c (if it
exists, else property shall be
absent)

 N

Region r

Free form text
Indicating the
current region in
which the device
is located
geographically.
The free form
text shall not
start with a quote
(").

N
org.openconnectivity.r (if it
exists, else property shall be
absent)

 N

Localized
Names ln

Human-friendly
name of the
Device, in one or
more languages.
This property is
an array of
objects where

N AppName

Application
name assigned
by the app
manufacturer
(developer or
the OEM).

Y

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 23

each object has a
‘language’ field
(containing an
RFC 5646
language tag)
and a ‘value’ field
containing the
device name in
the indicated
language. If this
property and the
Device Name (n)
property are both
supported, the
Device Name (n)
value shall be
included in this
array.

Default
Language dl

The default
language
supported by the
Device, specified
as an RFC 5646
language tag. By
default, clients
can treat any
string property as
being in this
language unless
the property
specifies
otherwise.

N DefaultLanguage

The default
language
supported by
the device.
Specified as an
IETF language
tag listed in
RFC 5646.

Y

 946

In addition, any additional vendor-defined fields in the AllJoyn Configuration data shall be mapped 947
to vendor-defined properties in the OCF Configuration resource (which implements the “oic.wk.con” 948
resource type and optionally the “oic.wk.con.p” resource type), with a property name formed by 949
prepending “x.” to the AllJoyn field name. 950

Table 5 shows how OCF Platform properties, as specified in Table 28 in ISO/IEC 30118-1:2018 951
shall be derived, typically from fields specified in the AllJoyn About Interface Specification and 952
AllJoyn Configuration Interface Specification. 953

Table 5 – oic.wk.p resource type definition 954

To OCF
Property title

OCF
Property

name
OCF

Description
OCF

Mand? From AJ Field name AJ Description AJ
Mand?

Platform ID pi

Unique
identifier for
the physical
platform
(UIUID); this
shall be a
UUID in
accordance
with IETF RFC
4122. It is
recommended
that the UUID
be created
using the
random
generation

Y

DeviceId if it is a UUID, else
generate a name-based UUID
from the DeviceId using the
DeviceId value (not including
any null termination) as the
“name” to be used in the
algorithm specified in
IETF RFC 4122 clause 4.3,
with SHA-1 as the hash
algorithm, and 8f0e4e90-
79e5-11e6-bdf4-
0800200c9a66 as the name
space ID.

Name of the
device set by
platform-
specific means
(such as Linux
and Android).

Y

http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 24

scheme
(version 4
UUID) specific
in the RFC.

Manufacturer
Name mnmn

Name of
manufacturer
(not to exceed
16 characters)

Y
Manufacturer
(in DefaultLanguage,
truncated to 16 characters)

The
manufacturer's
name of the
app.

Y

Manufacturer
Details Link
(URL)

mnml

URL to
manufacturer
(not to exceed
32 characters)

N
org.openconnectivity.mnml (if it
exists, else property shall be
absent)

 N

Model Number mnmo

Model number
as designated
by
manufacturer

N ModelNumber The app model
number. Y

Date of
Manufacture mndt Manufacturing

date of device N DateOfManufacture

Date of
manufacture
using format
YYYY-MM-DD
(known as XML
DateTime
format).

N

Platform
Version mnpv

Version of
platform –
string (defined
by
manufacturer)

N
org.openconnectivity.mnpv (if it
exists, else property shall be
absent)

 N

OS Version mnos

Version of
platform
resident OS –
string (defined
by
manufacturer)

N

org.openconnectivity.mnos (if it
exists, else property shall be
absent)

 N

Hardware
Version mnhw

Version of
platform
hardware

N HardwareVersion

Hardware version
of the device on
which the app is
running.

N

Firmware
version mnfv

Version of
device
firmware

N
org.openconnectivity.mnfv (if it
exists, else property shall be
absent)

 N

Support URL mnsl

URL that
points to
support
information
from
manufacturer

N SupportUrl
Support URL
(populated by the
manufacturer)

N

SystemTime st
Reference
time for the
device

N
org.openconnectivity.st (if it
exists, else property shall be
absent)

 N

Vendor ID vid

Vendor
defined string
for the
platform. The
string is
freeform and
up to the
vendor on
what text to
populate it.

N DeviceId

Name of the
device set by
platform-specific
means (such as
Linux and
Android).

Y

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 25

Table 6 shows how OCF Platform Configuration properties, as specified in Table 23 in the ISO/IEC 955
30118-1:2018 shall be derived: 956

Table 6 – oic.wk.con.p resource type definition 957

To OCF
Property title

OCF
Property

name
OCF

Description OCF Mand? From AJ
Field name

AJ
Description AJ Mand?

Platform
Names Mnpn Platform

Identifier N DeviceName

Name of the
device set by
platform-
specific
means (such
as Linux and
Android).

Device name
assigned by
the user. The
device name
appears on
the UI as the
friendly name
of the device.

 958

In addition, the “oic.wk.mnt” properties Factory_Reset (“fr”) and Reboot (“rb”) shall be mapped to 959
AllJoyn Configuration methods FactoryReset and Restart, respectively. 960

6.2.3 Exposing OCF resources to AllJoyn consumer applications 961

6.2.3.1 Use of AllJoyn Producer Application 962

Unless specified otherwise, each OCF resource shall be mapped to a separate AllJoyn object. 963

Each OCF Server shall be exposed as a separate AllJoyn producer application, with its own About 964
data. This allows platform-specific, device-specific, and resource-specific fields to all be preserved 965
across translation. However, this requires that AllJoyn Claiming of such producer applications be 966
solved in a way that does not require user interaction, but this is left as an implementation issue. 967

The AllJoyn producer application shall implement the “oic.d.virtual” AllJoyn interface. This allows 968
translators to determine if a device is already being translated when multiple translators are present. 969
The “oic.d.virtual” interface is defined as follows: 970

<interface name="oic.d.virtual"/> 971

The implementation may choose to implement this interface by the AllJoyn object at path “/oic/d”. 972

The AllJoyn peer ID shall be the OCF device ID (“di”). 973

Unless specified otherwise, the AllJoyn object path shall be the OCF URI path, where each “-” 974
(hyphen) in the OCF URI path is transformed to “_h”, each “.” (dot) in the OCF URI path is 975
transformed to “_d”, each “~” (tilde) in the OCF URI path is transformed to “_t”, and each “_” 976
(underscore) in the OCF URI path is transformed to “_u”. 977

The AllJoyn About data shall be populated per Table 8. 978

A translator implementation is encouraged to maintain a cache of OCF resources to handle the 979
implementation of queries from the AllJoyn side, and emit an Announce Signal for each OCF Server. 980
Specifically, the translator could always Observe “/oic/res” changes and only Observe other 981
resources when there is a client with a session on a Virtual AllJoyn Device. 982

There are multiple types of resources, which shall be handled as follows. 983

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 26

1) If the Resource Type is in a well-defined set (defined in ISO/IEC 30118-6:2018 or 6.2.3.2) of 984
resource types where standard forms exist on both the AllJoyn and OCF sides, the translator 985
shall either: 986

a) follow the specification for translating that resource type specially, or 987

b) not translate the Resource Type. 988

2) If the Resource Type is not in the well-defined set (but is not a Device Type), the translator 989
shall either: 990

a) not translate the Resource Type, or 991

b) algorithmically map the Resource Type as specified in 6.3 to a custom/vendor-defined 992
AllJoyn interface by converting the OCF Resource Type name to an AllJoyn Interface name. 993

An OCF Resource Type or Device Type shall be converted to an AllJoyn interface name as follows: 994

1) Remove the “x.” prefix if present 995

2) For each occurrence of a hyphen (in order from left to right in the string): 996

a) If the hyphen is followed by a letter, replace both characters with a single upper-case version 997
of that letter (e.g., convert “-a” to “A”). 998

b) Else, if the hyphen is followed by another hyphen followed by either a letter or a hyphen, 999
replace two hyphens with a single underscore (e.g., convert “--a” to “_a”, “---” to “_-”). 1000

c) Else, convert the hyphen to an underscore (i.e., convert “-” to “_”). 1001

Some examples are shown in the Table 7. The first three are unusual OCF names converted 1002
(perhaps back) to normal AllJoyn names. The last three are normal OCF names converted to 1003
unusual AllJoyn names. (“xn--” is a normal domain name prefix for the Punycode-encoded form of 1004
an Internationalized Domain Name, and hence can appear in a normal vendor-specific OCF name.) 1005

Table 7 – Example name mapping 1006

From OCF name To AllJoyn name

x.example.-widget example.Widget

x.example.my----widget example.my__widget

x.example.-my---widget example.My_Widget

x.xn--p1ai.example xn_p1ai.example

x.xn--90ae.example xn__90ae.example

x.example.my-name-1 example.myName_1

An OCF Device Type is mapped to an AllJoyn interface with no members. 1007

Unless specified otherwise, each OCF Resource Type shall be mapped to an AllJoyn interface as 1008
follows: 1009

– Each OCF property is mapped to an AllJoyn property in that interface, where each “.” (dot) in 1010
the OCF property is transformed to “_d”, and each “-” (hyphen) in the OCF property is 1011
transformed to “_h”. 1012

– The EmitsChangedSignal value for each AllJoyn property shall be set to “true” if the resource 1013
supports NOTIFY, or “false” if it does not. (The value is never set to “const” or “invalidates” 1014
since those concepts cannot currently be expressed in OCF.) 1015

– The “access” attribute for each AllJoyn property shall be “read” if the OCF property is read-only, 1016
or “readwrite” if the OCF property is read-write. 1017

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 27

– If the resource supports DELETE, a Delete() method shall appear in the interface. 1018

– If the resource supports CREATE, a Create() method shall appear in the interface, with input 1019
arguments of each property of the resource to create. (Such information is not available 1020
algorithmically can be determined via introspection.) If such information is not available, a 1021
CreateWithDefaultValues() method shall appear which takes no input arguments. In either 1022
case, the output argument shall be an OBJECT_PATH containing the path of the created 1023
resource. 1024

– If the resource supports UPDATE (i.e., the “oic.if.rw” or “oic.if.a” OCF Interface) then an AllJoyn 1025
property set operation (i.e., an org.freedesktop.DBus.Properties.Set() method call) shall be 1026
mapped to a Partial UPDATE (e.g., POST in CoAP) with the corresponding OCF property. 1027

– If a Resource has a Resource Type “oic.r.alljoynobject”, then instead of separately translating 1028
each of the Resources in the collection to its own AllJoyn object, all Resources in the collection 1029
shall instead be translated to a single AllJoyn object whose object path is the OCF URI path of 1030
the collection. 1031

OCF property types shall be mapped to AllJoyn data types according to 6.3. 1032

If an OCF operation fails, the translator shall send an appropriate AllJoyn error response to the 1033
AllJoyn consumer. If an error message is present in the OCF response, and the error message 1034
(e.g., diagnostic payload if using CoAP) fits the pattern "<error name>: <error message>" where 1035
<error name> conforms to the AllJoyn error name syntax requirements, the AllJoyn error name and 1036
AllJoyn error message shall be extracted from the error message in the OCF response. Otherwise, 1037
the AllJoyn error name shall be "org.openconnectivity.Error.Code<#>" where <#> is the error code 1038
(e.g., CoAP error code) in the OCF response without a decimal (e.g., "404") and the AllJoyn error 1039
message is the error message in the OCF response. 1040

6.2.3.2 Exposing an OCF server as a Virtual AllJoyn Producer 1041

The object description returned in the About interface shall be formed as specified in the AllJoyn 1042
About Interface Specification, and Table 8 shows how AllJoyn About Interface fields shall be 1043
derived, based on properties in “oic.wk.d”, “oic.wk.con”, “oic.wk.p”, and “oic.wk.con.p”. 1044

Table 8 – AllJoyn about data fields 1045

To AJ Field name AJ
Description

AJ
Mand?

From OCF
Property

title

OCF
Property

name
OCF Description OCF

Mand?

AppId

A 128-bit
globally unique
identifier for
the application.
The AppId shall
be a universally
unique
identifier as
specified in
RFC 4122.

Y

Device ID
(no exact
equivalent
exists)

di Unique identifier for
OCF Device (UUID) Y

DefaultLanguage

The default
language
supported by
the device.
Specified as an
IETF language
tag listed in
RFC 5646.

Y Default
Language dl

The default
language supported
by the Device,
specified as an RFC
5646 language tag.
By default, clients
can treat any string
property as being in
this language
unless the property
specifies otherwise.

N

http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 28

If absent, the
translator shall
return a constant,
e.g., empty string

DeviceName (per
supported language)

Name of the
device set by
platform-
specific means
(such as Linux
and Android).

N Platform
Names mnpn

Friendly name of
the Platform. This
property is an array
of objects where
each object has a
‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the
platform friendly
name in the
indicated language.

For example,
[{“language”:”en”,
 “value”:”Dave’s
Laptop”}]

N

DeviceId

Device
identifier set by
platform-
specific means.

Y Platform ID pi Platform Identifier Y

AppName (per supported
language)

Application
name assigned
by the app
manufacturer
(developer or
the OEM).

Y

Localized
Names, if it
exists,
else
(Device)
Name

ln
or
n

Human-friendly
name of the Device,
in one or more
languages. This
property is an array
of objects where
each object has a
‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the
device name in the
indicated language.
If this property and
the Device Name
(n) property are
both supported, the
Device Name (n)
value shall be
included in this
array.

N (ln),
Y (n)

Manufacturer (per
supported language)

The
manufacturer's
name of the
app.

Y Manufacturer
Name dmn

Name of
manufacturer of the
Device, in one or
more languages.
This property is an
array of objects
where each object
has a ‘language’
field (containing an
RFC 5646 language
tag) and a ‘value’
field containing the
manufacturer name
in the indicated
language.

N

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 29

ModelNumber The app model
number. Y Model

Number dmno
Model number as
designated by
manufacturer

N

SupportedLanguages
List of
supported
languages.

Y

language
fields of
Localized
Names

ln

If ln is supported,
return the list of
values of the
language field of
each array element,
else return empty
array

N

Description (per supported
language)

Detailed
description
expressed in
language tags
as in RFC
5646.

Y Localized
Descriptions ld

Detailed description
of the Device, in
one or more
languages. This
property is an array
of objects where
each object has a
‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the
device description
in the indicated
language.

N

DateOfManufacture

Date of
manufacture
using format
YYYY-MM-DD
(known as XML
DateTime
format).

N Date of
Manufacture mndt Manufacturing date

of device N

SoftwareVersion
Software
version of the
app.

Y Software
Version sv Software version of

the device. N

AJSoftwareVersion

Current version
of the AllJoyn
SDK used by
the application.

Y (none) Translator should
return its own value

HardwareVersion

Hardware
version of the
device on
which the app
is running.

N Hardware
Version mnhw Version of platform

hardware N

SupportUrl

Support URL
(populated by
the
manufacturer).

N Support URL mnsl
URL that points to
support information
from manufacturer

N

org.openconnectivity.mnml N
Manufacturer
Details Link
(URL)

mnml (if
it exists,
else field
shall be
absent)

URL to
manufacturer (not to
exceed 32
characters)

N

org.openconnectivity.mnpv N Platform
Version

mnpv (if
it exists,
else field
shall be
absent)

Version of platform
– string (defined by
manufacturer)

N

org.openconnectivity.mnos N OS Version
mnos (if
it exists,
else field

Version of platform
resident OS – string

N

http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 30

shall be
absent)

(defined by
manufacturer)

org.openconnectivity.mnfv N Firmware
version

mnfv (if it
exists,
else field
shall be
absent)

Version of device
firmware N

org.openconnectivity.st N SystemTime

st (if it
exists,
else field
shall be
absent)

Reference time for
the device N

org.openconnectivity.piid N
Protocol-
Independent
ID

piid

A unique and
immutable Device
identifier. A Client
can detect that a
single Device
supports multiple
communication
protocols if it
discovers that the
Device uses a
single Protocol
Independent ID
value for all the
protocols it
supports.

Y

 1046

The AllJoyn field “org.openconnectivity.piid” shall be announced but shall not be localized and its 1047
D-Bus type signature shall be “s”. All other AllJoyn field names listed in Table 5 which have the 1048
prefix “org.openconnectivity.” shall be neither announced nor localized and their D-Bus type 1049
signature shall be “s”. 1050

In addition, any additional vendor-defined properties in the OCF Device resource “/oic/d” (which 1051
implements the “oic.wk.d” resource type) and the OCF Platform resource “/oic/p” (which implements 1052
the “oic.wk.p” resource type) shall be mapped to vendor-defined fields in the AllJoyn About data, 1053
with a field name formed by removing the leading “x.” from the property name. 1054

Table 9 shows how AllJoyn Configuration Interface fields shall be derived, based on properties in 1055
“oic.wk.con” and “oic.wk.con.p”. 1056

Table 9 – AllJoyn configuration data fields 1057

To AJ Field name AJ
Description

AJ
Mand?

From OCF
Property title

OCF
Property

name
OCF Description OCF

Mand?

DefaultLanguage

Default
language
supported by
the device.

N Default
Language dl

The default language
supported by the
Device, specified as
an RFC 5646
language tag. By
default, clients can
treat any string
property as being in
this language unless
the property
specifies otherwise.

N

DeviceName Device name
assigned by

N PlatformNames mnpn Friendly name of the
Platform. This

N

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 31

the user. The
device name
appears on
the UI as the
friendly name
of the device.

property is an array
of objects where
each object has a
‘language’ field
(containing an RFC
5646 language tag)
and a ‘value’ field
containing the
platform friendly
name in the
indicated language.

For example,
[{“language”:”en”,
 “value”:”Dave’s
Laptop”}]

org.openconnectivity.loc N
Location

loc (if it
exists,
else field
shall be
absent)

Provides location
information where
available.

N

org.openconnectivity.locn N Location Name

locn (if it
exists,
else field
shall be
absent)

Human friendly
name for location
For example, “Living
Room”.

N

org.openconnectivity.c N Currency

c (if it
exists,
else field
shall be
absent)

Indicates the
currency that is used
for any monetary
transactions

N

org.openconnectivity.r N Region

r (if it
exists,
else field
shall be
absent)

Free form text
Indicating the
current region in
which the device is
located
geographically. The
free form text shall
not start with a quote
(").

N

 1058

The AllJoyn field “org.openconnectivity.loc” shall be neither announced nor localized and its D-Bus 1059
type signature shall be “ad”. All other AllJoyn field names listed in Table 5 which have the prefix 1060
“org.openconnectivity.” shall be neither announced nor localized and their D-Bus type signature 1061
shall be “s”. 1062

In addition, the Configuration methods FactoryReset and Restart shall be mapped to “oic.wk.mnt” 1063
properties Factory_Reset (“fr”) and Reboot (“rb”), respectively, and any additional vendor-defined 1064
properties in the OCF Configuration resource (which implements the “oic.wk.con” resource type 1065
and optionally the “oic.wk.con.p” resource type) shall be mapped to vendor-defined fields the 1066
AllJoyn Configuration data, with a field name formed by removing the leading “x.” from the property 1067
name. 1068

6.3 On-the-Fly Translation from D-Bus and OCF payloads 1069

6.3.1 Introduction 1070

The “dbus1” payload format is specified in the D-Bus Specification and AllJoyn adopted the D-Bus 1071
protocol and made it distributed over the network. The modifications done by AllJoyn to the format 1072

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 32

are all in the header part of the packet, not in the data payload itself, which remains compatible 1073
with “dbus1”. Other variants of the protocol that have been proposed by the Linux community 1074
(“GVariant” and “kdbus” payloads) contain slight incompatibilities and are not relevant for this 1075
discussion. 1076

6.3.2 Translation without aid of introspection 1077

6.3.2.1 Introduction 1078

Clause 6.3.2 describes how translators shall translate messages between the two payload formats 1079
in the absence of introspection metadata from the actual device. This situation arises in the when 1080
there is content not described by introspection, such as the inner payload of AllJoyn properties of 1081
type “D-Bus VARIANT”. 1082

Since introspection is not available, the translator cannot know the rich JSON sub-type, only the 1083
underlying CBOR type and from that it can infer the JSON generic type, and hence translation is 1084
specified in terms of those generic types. 1085

6.3.2.2 Booleans 1086

Boolean conversion is trivial since both sides support this type. 1087

Table 10 – Boolean translation 1088

D-Bus type JSON type

“b” – BOOLEAN boolean (true or false)

 1089

6.3.2.3 Numeric types 1090

The translation of numeric types is lossy and that is unavoidable due to the limited expressiveness 1091
of the JSON generic types. This can only be solved with introspection. 1092

The translation of numeric types is direction-specific. 1093

Table 11 – Numeric type translation, D-Bus to JSON 1094

From D-Bus type To JSON type

“y” - BYTE (unsigned 8-bit) Number

“n” - UINT16 (unsigned 16-bit)

“u” - UINT32 (unsigned 32-bit)

“t” - UINT64 (unsigned 64-bit)a

“q” - INT16 (signed 16-bit)

“”" - INT32 (signed 32-bit)

”x” - INT64 (signed 64-bit)a

“d” - DOUBLE (IEEE 754 double precision)

a D-Bus payloads of types “t” (UINT64) and “x” (INT64) can contain values that cannot be perfectly represented in
IEEE 754 double-precision floating point. The RFCs governing JSON do not forbid such numbers but caution that
many implementations may not be able to deal with them. Currently, OCF transports its payload using CBOR
instead of JSON, which can represent those numbers with fidelity. However, it should be noted that ISO/IEC 30118-
1:2018 does not allow for integral numbers outside the range -2^53≤x≤2^53.

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 33

 1095

Table 12 – Numeric type translation, JSON to D-Bus 1096

From JSON type To D-Bus type

number “d” - DOUBLEa

a To provide the most predictable result, all translations from OCF to AllJoyn produce values of type “d” DOUBLE
(IEEE 754 double precision).

 1097

 1098

6.3.2.4 Text strings 1099

Table 13 – Text string translation 1100

D-Bus type JSON type

“s” – STRING string

Conversion between D-Bus and JSON strings is simple, as both require their content to be valid 1101
Unicode. For example, an implementation can typically do a direct byte copy, as both protocols 1102
specify UTF-8 as the encoding of the data, neither constrains the data to a given normalisation 1103
format nor specify whether private-use characters or non-characters should be disallowed. 1104

Since the length of D-Bus strings is always known, it is recommended translators not use CBOR 1105
indeterminate text strings (first byte 0x7f). 1106

6.3.2.5 Byte arrays 1107

The translation of a byte array is direction-specific. 1108

Table 14 – Byte array translation 1109

From D-Bus type To JSON type

“ay” - ARRAY of BYTE (base64-encoded) string

The base64url encoding is specified in IETF RF 4648 clause 5. 1110

6.3.2.6 D-Bus variants 1111

Table 15 – D-Bus variant translation 1112

D-Bus type JSON type

“v” – VARIANT see clause 6.3.2.6

 1113

D-Bus has a type called VARIANT (“v”) that is a wrapper around any other D-Bus type. It’s a way 1114
for the type system to perform type-erasure. JSON, on the other hand, is not type-safe, which 1115
means that all JSON values are, technically, variants. The conversion for a D-Bus variant to JSON 1116
is performed by entering that variant and encoding the type carried inside as per the rules in this 1117
document. 1118

The algorithm must be recursive, as D-Bus variants are allowed to contain variants themselves. 1119

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 34

6.3.2.7 D-Bus object paths and signatures 1120

The translation of D-Bus object paths and signatures is unidirectional (there is no mapping to them, 1121
only from them). This is shown in Table 16. In the reverse direction, clause 6.3.2.4 always converts 1122
to D-Bus STRING rather than OBJECT_PATH or SIGNATURE since it is assumed that “s” is the 1123
most common string type in use. 1124

Table 16 – D-Bus object path translation 1125

From D-Bus type To JSON type

“o” - OBJECT_PATH string

“g” – SIGNATURE

 1126

Both D-Bus object paths and D-Bus type signatures are US-ASCII strings with specific formation 1127
rules, found in the D-Bus Specification. They are very seldom used and are not expected to be 1128
found in resources subject to translation without the aid of introspection. 1129

6.3.2.8 D-Bus structures 1130

The translation of the types in Table 17 is direction-specific: 1131

Table 17 – D-Bus structure translation 1132

From D-Bus type To JSON type

“r” – STRUCT array, length > 0

 1133

D-Bus structures can be interpreted as a fixed-length array containing a pre-determined list of types 1134
for each member. This is how such a structure is mapped to JSON: as an array of heterogeneous 1135
content, which are the exact members of the D-Bus structure, in the order in which they appear in 1136
the structure. 1137

6.3.2.9 Arrays 1138

The translation of the types in Table 18 is bidirectional: 1139

Table 18 – Byte array translation 1140

D-Bus type JSON type

“ay” - ARRAY of BYTE (base64-encoded) string – see 6.3.2.5

“ae” - ARRAY of DICT_ENTRY object – see 6.3.2.10

 1141

 1142

The translation of the types in Table 19 is direction-specific: 1143

Table 19 – Other array translation 1144

From D-Bus type To JSON type

“a” – ARRAY of anything else not specified array

 1145

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 35

Aside from arrays of bytes and arrays of dictionary entries, which are mapped to JSON strings and 1146
objects respectively, arrays in JSON cannot be constrained to a single type (i.e., heterogeneous 1147
arrays). For that reason, strictly speaking all D-Bus arrays excepting arrays of bytes and arrays of 1148
dictionary entries must first be converted to arrays of variant “av” and then that array can be 1149
converted to JSON. See Table 20. 1150

Table 20 – JSON array translation 1151

From JSON type Condition To D-Bus type

array length=0 “av” – ARRAY of VARIANT

array length>0, all elements of same type “a” – ARRAY

array length>0, elements of different types “r” – STRUCT

Conversion of D-Bus arrays of variants uses the conversion of variants as specified, which simply 1152
eliminates the distinction between a variant containing a given value and that value outside a 1153
variant. In other words, the elements of a D-Bus array are extracted and sent as elements of the 1154
JSON array, as per the other rules of this document. 1155

6.3.2.10 Dictionaries / Objects 1156

The choice of “dictionary of STRING to VARIANT” is made because that is the most common type 1157
of dictionary found in payloads and is an almost perfect superset of all possible dictionaries in D-1158
Bus anyway. Moreover, it can represent JSON Objects with fidelity, which is the representation that 1159
OCF uses in its data models, which in turn means those D-Bus dictionaries will be able to carry 1160
with fidelity any OCF JSON Object in current use. See Table 21 1161

Table 21 – D-Bus dictionary translation 1162

D-Bus type JSON type

“a{sv}” - dictionary of STRING to VARIANT object

D-Bus dictionaries that are not mapping string to variant are first converted to those constraints 1163
and then encoded in CBOR. 1164

6.3.2.11 Non-translatable types 1165

The types in are not translatable, and the translator should drop the incoming message. None of 1166
the types in Table 22 are in current use by either AllJoyn or OCF 1.0 devices, so the inability to 1167
translate them should not be a problem. 1168

Table 22 – Non-translation types 1169

Type Scope Type Name Description

D-Bus "h" UNIX_FD (Unix File Descriptor)

JSON Null

JSON undefined Not officially valid JSON, but some
implementations permit it

 1170

6.3.2.12 Examples 1171

Table 23 and Table 24 provide some translation examples. 1172

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 36

Table 23 – D-Bus to JSON translation examples 1173

Source D-Bus JSON Result

BOOLEAN(FALSE) false

BOOLEAN(TRUE) true

VARIANT(BOOLEAN(FALSE)) false

VARIANT(BOOLEAN(TRUE)) true

BYTE(0) 0.0

BYTE(255) 255.0

INT16(0) 0.0

INT16(-1) -1.0

INT16(-32768) -32768.0

UINT16(0) 0.0

UINT16(65535) 65535.0

INT32(0) 0.0

INT32(-2147483648) -2147483648.0

INT32(2147483647) 2147483647.0

UINT32(0) 0.0

UINT32(4294967295) 4294967295.0

INT64(0) 0.0

INT64(-1) -1.0

UINT64(18446744073709551615) 18446744073709551615.0(1)

DOUBLE(0.0) 0.0

DOUBLE(0.5) 0.5

STRING(“”) “”

STRING(“Hello”) “Hello”

ARRAY<BYTE>() “”

ARRAY<BYTE>(0x48, 0x65, 0x6c, 0x6c, 0x6f) ”SGVsbG8”

OBJECT_PATH(“/”) “/”

SIGNATURE() “”

SIGNATURE(“s”) “s”

VARIANT(INT32(0)) 0

VARIANT(VARIANT(INT32(0))) 0

VARIANT(STRING(“Hello”)) “Hello”

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 37

 1174

Table 24 – JSON to D-Bus translation examples 1175

Source JSON D-Bus Result

false BOOLEAN(false)

true BOOLEAN(true)

0 DOUBLE(0.0)

-1 DOUBLE(-1.0)

-2147483648 DOUBLE(-2147483648.0)

2147483647 DOUBLE(2147483647.0)

2147483648 DOUBLE(2147483648.0)

-2147483649 DOUBLE(-2147483649.0)

9223372036854775808(1) DOUBLE(9223372036854775808.0)

0.0 DOUBLE(0.0)

0.5 DOUBLE(0.5)

0.0f DOUBLE(0.0)

0.5f DOUBLE(0.5)

“” STRING(“”)

“Hello” STRING(“Hello”)

[] ARRAY<VARIANT>()

[1] ARRAY<DOUBLE>(DOUBLE(1.0))

[1, 2147483648, false, “Hello”] STRUCT<DOUBLE, DOUBLE, BOOLEAN,
STRING>(DOUBLE(1.0), DOUBLE(2147483648.0),
BOOLEAN(false), STRING(“Hello”))

{} map<STRING, VARIANT>()

{1: 1} map<STRING, VARIANT>(“1” →
VARIANT(DOUBLE(1.0)))

{“1”: 1} map<STRING, VARIANT>(“1” →
VARIANT(DOUBLE(1.0)))

{“rep”:
 {
 “state”: false,
 “power”: 1.0,
 “name”: “My Light”
 }
}

map<STRING, VARIANT>(
 {STRING(“rep”), VARIANT(map<STRING, VARIANT>(
 {STRING(“state”) →
VARIANT(BOOLEAN(FALSE))},
 {STRING(“power”) → VARIANT(DOUBLE(1.0))},
 {STRING(“name”) → VARIANT(STRING(“My
Light”))}
))}
)

NOTE This value cannot be represented with IEEE754 double-precision floating point without loss of information. It is 1176
also outside the currently-allowed range of integrals in OCF. 1177

6.3.3 Translation with aid of introspection 1178

6.3.3.1 Introduction to Introspection Metadata 1179

When introspection is available, the translator can use the extra metadata provided by the side 1180
offering the service to expose a higher-quality reply to the other side. This chapter details 1181
modifications to the translation described in the previous chapter when the metadata is found. 1182

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 38

Introspection metadata can be used for both translating requests to services and replies from those 1183
services. When used to translate requests, the introspection is “constraining”, since the translator 1184
must conform exactly to what that service expects. When used to translate replies, the introspection 1185
is “relaxing”, but may be used to inform the receiver what other possible values may be encountered 1186
in the future. 1187

Note that OCF introspection uses JSON types, media attributes, and format attributes, not CBOR 1188
encoding. The actual encoding of each JSON type is discussed in clause 12.4 of ISO/IEC 30118-1189
1:2018 , JSON format attribute values are as defined in JSON Schema Validation, and JSON media 1190
attribute values are as defined in JSON Hyper-Schema. 1191

6.3.3.2 Translation of the introspection itself 1192

Note that both OCF 1.0 and AllJoyn require all services exposed to include introspection metadata, 1193
which means the translator will need to translate the introspection information on-the-fly for each 1194
OCF resource or AllJoyn producer it finds. The translator shall preserve as much of the original 1195
information as can be represented in the translated format. This includes both the information used 1196
in machine interactions and the information used in user interactions, such as description and 1197
documentation text. 1198

6.3.3.3 Variability of introspection data 1199

Introspection data is not a constant and the translator may find, upon discovering further services, 1200
that the D-Bus interface or OCF Resource Type it had previously encountered is different than 1201
previously seen. The translator needs to take care about how the destination side will react to a 1202
change in introspection. 1203

D-Bus interfaces used by AllJoyn services may be updated to newer versions, which means a given 1204
type of service may be offered by two distinct versions of the same interface. Updates to 1205
standardised interfaces must follow strict guidelines established by the AllSeen Interface Review 1206
Board, mapping each version to a different OCF Resource Type should be possible without much 1207
difficulty. However, there’s no guarantee that vendor-specific extensions follow those requirements. 1208
Indeed, there’s nothing preventing two revisions of a product to contain completely incompatible 1209
interfaces that have the same name and version number. 1210

On the opposite direction, the rules are much laxer. Since OCF specifies optional properties to its 1211
Resource Types, a simple monotonically-increasing version number like AllJoyn consumer 1212
applications expect is not possible. 1213

However, it should be noted that services created by the translator by “on-the-fly” translation will 1214
only be accessed by generic client applications. Dedicated applications will only use “deep binding” 1215
translation. 1216

6.3.3.4 Numeric types 1217

For numeric values, all D-Bus and JSON numeric types are treated equally as source and may all 1218
be translated into any of the other side’s types. When translating a request to a service, the 1219
translator need only verify whether there would be loss of information when translating from source 1220
to destination. For example, when translating the number 1.5 to either a JSON integer or to one of 1221
the D-Bus integral types, there would be loss of information, in which case the translator should 1222
refuse the incoming message. Similarly, the value 1,234,567 does not fit the range of a D-Bus byte, 1223
16-bit signed or unsigned integer. 1224

When translating the reply from the service, the translator shall use the following rules. 1225

Table 25 indicates how to translate from a JSON type to the corresponding D-Bus type, where the 1226
first matching row shall be used. If the JSON schema does not indicate the minimum value of a 1227
JSON integer, 0 is the default. If the JSON schema does not indicate the maximum value of a 1228

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 39

JSON integer, 232 – 1 is the default. The resulting AllJoyn introspection XML shall contain 1229
“org.alljoyn.Bus.Type.Min” and “org.alljoyn.Bus.Type.Max” annotations whenever the minimum or 1230
maximum, respectively, of the JSON value is different from the natural minimum or maximum of 1231
the D-Bus type. 1232

Table 25 – JSON type to D-Bus type translation 1233

From JSON type Condition To D-Bus Type

integer

minimum ≥ 0 AND maximum < 28 “y” (BYTE)

minimum ≥ 0 AND maximum < 216 “q” (UINT16)

minimum ≥ -215 AND maximum < 215 “n” (INT16)

minimum ≥ 0 AND maximum < 232 “u” (UINT32)

minimum ≥ -231 AND maximum < 231 “i" (INT32)

minimum ≥ 0 ”t” (UINT64)

 “x” (INT64)

Number “d” (DOUBLE)

String pattern = “^0|([1-9][0-9]{0,19})$” “t” (UINT64)

pattern = “^0|(-?[1-9][0-9]{0,18)}$” “x” (INT64)

Table 26 indicates how to translate from a D-Bus type to the corresponding JSON type. 1234

Table 26 – D-Bus type to JSON type translation 1235

From D-Bus type To JSON type Note

 “y” (BYTE) integer

“minimum” and “maximum” in the
JSON schema shall be set to the
value of the
“org.alljoyn.Bus.Type.Min” and
“org.alljoyn.Bus.Type.Max”
(respectively) annotations if present,
or to the min and max values of the
D-Bus type’s range if such
annotations are absent.

 “n” (UINT16)

 “q” (INT16)

 “u” (UINT32)

 “i" (INT32)

 “t” (UINT64) integer if org.alljoyn.Bus.Type.Max ≤
253, else string with JSON pattern
attribute “^0|([1-9][0-
9]{0,19})$”.

IETF RFC 7159 clause 6 explains
that higher JSON integers are not
interoperable.

 “x” (INT64) integer (if org.alljoyn.Bus.Type.Min ≥
-253 AND org.alljoyn.Bus.Type.Max ≤
253), else string with JSON pattern
attribute “^0|(-?[1-9][0-
9]{0,18)}$”.

IETF RFC 7159 clause 6 explains
that other JSON integers are not
interoperable.

 “d” (double) number

 1236

 1237

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 40

6.3.3.5 Text string and byte arrays 1238

There’s no difference in the translation of text strings and byte arrays compared to clause 6.3.2. 1239
Clause 6.3.3 simply lists the JSON equivalent types for the generated OCF introspection. See 1240
Table 27. 1241

Table 27 – Text string translation 1242

D-Bus Type JSON type JSON media attribute,
binaryEncoding property

“s” – STRING string (none)

“ay” - ARRAY of BYTE string base64

In addition, the mapping of the JSON Types in Table 28 is direction-specific: 1243

Table 28 – JSON UUID string translation 1244

From JSON type Condition To D-Bus Type

string pattern = “^[a-fA-F0-9]{8}-[a-fA-F0-
9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-
fA-F0-9]{12}$”

“ay” – ARRAY of BYTE

JSON strings with any other format value (e.g., date-time, uri, etc.) or pattern value not shown in 1245
Table 28 shall be treated the same as if the format and pattern attributes were absent, by simply 1246
mapping the value to a D-Bus string. 1247

6.3.3.6 D-Bus Variants 1248

If the introspection of an AllJoyn producer indicates a value in a request should be a D-Bus 1249
VARIANT, the translator should create such a variant and encode the incoming value as the 1250
variant’s payload as per the rules in the rest of this document. See Table 29. 1251

Table 29 – D-Bus variant translation 1252

D-Bus Type JSON Type

“v” – VARIANT see clause 6.3.3.6

6.3.3.7 D-Bus Object Paths and Signatures 1253

If the introspection of an AllJoyn producer indicates a value in a request should be a D-Bus Object 1254
Path or D-Bus Signature, the translator should perform a validity check in the incoming CBOR Text 1255
String. If the incoming data fails to pass this check, the message should be rejected. See Table 30. 1256

Table 30 – D-Bus object path translation 1257

From D-Bus Type To JSON Type

“o” – OBJECT_PATH string

“g” – SIGNATURE

6.3.3.8 D-Bus structures 1258

D-Bus structure members are described in the introspection XML with the 1259
“org.alljoyn.Bus.Struct.StructureName.Field.fieldName.Type” annotation. The translator shall use 1260
the AJSoftwareVersion field of the About data obtained from a bridged AllJoyn producer as follows. 1261
When the version of AllJoyn implemented on the Bridged Device is v16.10.00 or greater and the 1262
member annotations are present, the translator shall use a JSON object to represent a structure, 1263
mapping each member to the entry with that name. The translator needs to be aware that the 1264

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 41

incoming CBOR payload may have changed the order of the fields, when compared to the D-Bus 1265
structure. When the version of AllJoyn implemented on the Bridged Device is less than v16.10.00, 1266
the translator shall follow the rule for translating D-Bus structures without the aid of introspection 1267
data. 1268

6.3.3.9 Arrays and dictionaries 1269

If the introspection of the AllJoyn interface indicates that the array is neither an ARRAY of BYTE 1270
(“ay”) nor an ARRAY of VARIANT (“av”) or that the dictionary is not mapping STRING to VARIANT 1271
(“a{sv}”), the translator shall apply the constraining or relaxing rules specified in other clauses. 1272

Similarly, if the OCF introspection indicates a homogeneous array type, the information about the 1273
array’s element type should be used as the D-Bus array type instead of VARIANT (“v”). 1274

6.3.3.10 Other JSON format attribute values 1275

The JSON format attribute may include other custom attribute types. They are not known at this 1276
time, but it is expected that those types be handled by their type and representation alone. 1277

6.3.3.11 Examples 1278

Table 31 and Table 32 provide examples using introspection. 1279

Table 31 – Mapping from AllJoyn using introspection 1280

AllJoyn Source AllJoyn Introspection
Notes

Translated JSON
Payload

OCF Introspection Notes

UINT32 (0) 0 JSON schema should indicate:
“type”: “integer”,
“minimum”: 0,
“maximum”: 4294967295

INT64 (0) 0 Since no Min/Max annotations
exist in AllJoyn,
JSON schema should indicate:
“type”: “string”,
“pattern”: “^0|(-?[1-9][0-
9]{0,18)}$”

UINT64 (0) “0” Since no Max annotation exists
in AllJoyn, JSON schema should
indicate:
“type”: “string”,
“pattern”: ^0|([1-9][0-9]{0,19})$”

STRING(“Hello”) “Hello” JSON schema should indicate:
“type”: “string”

OBJECT_PATH(“/”) “/” JSON schema should indicate:
“type”: “string”

SIGNATURE(“g”) “g” JSON schema should indicate:
“type”: “string”

ARRAY<BYTE>(0x48,
0x65, 0x6c, 0x6c,
0x6f)

 “SGVsbG8” JSON schema should indicate:
“type”: “string”,
“media binaryEncoding”:
“base64”

VARIANT(anything) ? JSON schema should indicate:

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 42

“type”: ["boolean", "object",
"array", "number", "string",
"integer"]

ARRAY<INT32>() [] JSON schema should indicate:
“type”: “array”,
"items": { "type": "integer" }

ARRAY<INT64>() [] JSON schema should indicate:
"type": "array",
"items": { "type": "string",
"pattern": "^0|([1-9][0-
9]{0,18})$" }

STRUCT< INT32,
INT32>(
 0, 1
)

AllJoyn introspection
specifies the argument
with the annotation:

<struct name="Point">
 <field name="x"
type="i"/>
 <field name="y"
type="i"/>
</struct>

{“x”: 0, “y”: 1} JSON schema should indicate:
"type": "object", "properties":
{ "x": { "type": "integer" }, "y":
{ "type": "integer" } }

 1281

Table 32 – Mapping from CBOR using introspection 1282

CBOR Payload OCF Introspection
Notes

Translated AllJoyn
AllJoyn Introspection

Notes

0 "type": "integer" INT32(0)

0 "type": "integer",
"minimum": -240,
"maximum": 240

INT64(0)

org.alljoyn.Bus.Type.Min
= -240
org.alljoyn.Bus.Type.Max
= 240

0 "type": "integer",
"minimum": 0,
"maximum": 248

UINT64(0)

org.alljoyn.Bus.Type.Max
= 248

0.0 “type”: “number” DOUBLE(0.0)

[1] JSON schema
indicates:
"type": "array",
"items": { "type":
"integer", "minimum":
0, "maximum": 246 }

ARRAY<UINT64>(1) org.alljoyn.Bus.Type.Max
= 246

 1283

7 Device type definitions 1284

The required Resource Types are listed in Table 33. 1285

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 43

Table 33 – Device type definitions 1286

Device Name
(informative)

Device Type (“rt”)
(Normative)

Required Resource name Required Resource Type

Bridge oic.d.bridge Secure Mode oic.r.securemode

Virtual Device oic.d.virtual Device oic.wk.d

8 Resource type definitions 1287

8.1 List of resource types 1288

Table 34 lists the Resource Types defined in this document. 1289

Table 34 – Alphabetical list of resource types 1290

Friendly Name (informative) Resource Type (rt) Clause

AllJoyn Object oic.r.alljoynobject 8.2

Secure Mode oic.r.securemode 8.3

 1291

8.2 AllJoyn Object 1292

8.2.1 Introduction 1293

This resource is a collection of resources that were all derived from the same AllJoyn object. 1294

8.2.2 Example URI 1295

/example/AllJoynObject/ 1296

8.2.3 Resource type 1297

The resource type (rt) is defined as: ['oic.r.alljoynobject', 'oic.wk.col']. 1298

8.2.4 OpenAPI 2.0 definition 1299

{ 1300
 "swagger": "2.0", 1301
 "info": { 1302
 "title": "OCFAllJoynObject", 1303
 "version": "v1.0.0-20170531", 1304
 "license": { 1305
 "name": "copyright 2016-2017 Open Connectivity Foundation, Inc. All rights reserved.", 1306
 "x-description": "Redistribution and use in source and binary forms, with or without modification, 1307
are permitted provided that the following conditions are met:\n 1. Redistributions of source 1308
code must retain the above copyright notice, this list of conditions and the following disclaimer.\n 1309
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions 1310
and the following disclaimer in the documentation and/or other materials provided with the 1311
distribution.\n\n THIS SOFTWARE IS PROVIDED BY THE Open Connectivity Foundation, INC. \"AS 1312
IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 1313
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES OF NON-INFRINGEMENT, ARE 1314
DISCLAIMED.\n IN NO EVENT SHALL THE Open Connectivity Foundation, INC. OR CONTRIBUTORS BE 1315
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 1316
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 1317
BUSINESS INTERRUPTION)\n HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 1318
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 1319
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n" 1320
 } 1321
 }, 1322
 "schemes": ["http"], 1323
 "consumes": ["application/json"], 1324
 "produces": ["application/json"], 1325
 "paths": { 1326
 "/example/AllJoynObject/?if=oic.if.ll" : { 1327

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 44

 "get": { 1328
 "description": "This resource is a collection of resources that were all derived from the 1329
same AllJoyn object.\nRetrieves the Links in the current AllJoyn object.\n", 1330
 "parameters": [1331
 {"$ref": "#/parameters/interface-ll"} 1332
], 1333
 "responses": { 1334
 "200": { 1335
 "description" : "", 1336
 "x-example": 1337
 [1338
 {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 1339
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1340
 {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 1341
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1342
 {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 1343
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1344
 {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 1345
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]} 1346
] 1347
 , 1348
 "schema": { "$ref": "#/definitions/AllJoynObject-ll" } 1349
 } 1350
 } 1351
 } 1352
 }, 1353
 "/example/AllJoynObject/?if=oic.if.baseline" : { 1354
 "get": { 1355
 "description": "This resource is a collection of resources that were all derived from the 1356
same AllJoyn object.\nRetrieves the current AllJoyn object information.\n", 1357
 "parameters": [1358
 {"$ref": "#/parameters/interface-baseline"} 1359
], 1360
 "responses": { 1361
 "200": { 1362
 "description" : "", 1363
 "x-example": 1364
 { 1365
 "rt": ["oic.r.alljoynobject","oic.wk.col"], 1366
 "id": "unique_example_id", 1367
 "links": [1368
 {"href": "/myRes1URI", "rt": ["x.example.widget.false"], "if": 1369
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1370
 {"href": "/myRes2URI", "rt": ["x.example.widget.true"], "if": 1371
["oic.if.r","oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1372
 {"href": "/myRes3URI", "rt": ["x.example.widget.method1"], "if": 1373
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]}, 1374
 {"href": "/myRes4URI", "rt": ["x.example.widget.method2"], "if": 1375
["oic.if.rw","oic.if.baseline"], "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:11111"}]} 1376
] 1377
 } 1378
 , 1379
 "schema": { "$ref": "#/definitions/AllJoynObject" } 1380
 } 1381
 } 1382
 } 1383
 } 1384
 }, 1385
 "parameters": { 1386
 "interface-ll" : { 1387
 "in" : "query", 1388
 "name" : "if", 1389
 "type" : "string", 1390
 "enum" : ["oic.if.ll"] 1391
 }, 1392
 "interface-baseline" : { 1393
 "in" : "query", 1394
 "name" : "if", 1395
 "type" : "string", 1396
 "enum" : ["oic.if.baseline"] 1397

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 45

 }, 1398
 "interface-all" : { 1399
 "in" : "query", 1400
 "name" : "if", 1401
 "type" : "string", 1402
 "enum" : ["oic.if.ll", "oic.if.baseline"] 1403
 } 1404
 }, 1405
 "definitions": { 1406
 "AllJoynObject-ll": { 1407
 "type": "array", 1408
 "items": { 1409
 "$ref": "#/definitions/oic.oic-link" 1410
 } 1411
 }, 1412
 "oic.oic-link": { 1413
 "properties": { 1414
 "if": { 1415
 "description": "The interface set supported by this resource", 1416
 "items": { 1417
 "enum": [1418
 "oic.if.baseline", 1419
 "oic.if.rw", 1420
 "oic.if.r" 1421
], 1422
 "type": "string" 1423
 }, 1424
 "minItems": 1, 1425
 "uniqueItems": true, 1426
 "readOnly": true, 1427
 "type": "array" 1428
 }, 1429
 "rt": { 1430
 "description": "Resource Type of the Resource", 1431
 "items": { 1432
 "type": "string" 1433
 }, 1434
 "minItems": 1, 1435
 "maxItems": 1, 1436
 "uniqueItems": true, 1437
 "readOnly": true, 1438
 "type": "array" 1439
 }, 1440
 "anchor": { 1441
 "$ref": 1442
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1443
schema.json#/definitions/anchor" 1444
 }, 1445
 "di": { 1446
 "$ref": 1447
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1448
schema.json#/definitions/di" 1449
 }, 1450
 "eps": { 1451
 "$ref": 1452
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1453
schema.json#/definitions/eps" 1454
 }, 1455
 "href": { 1456
 "$ref": 1457
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1458
schema.json#/definitions/href" 1459
 }, 1460
 "ins": { 1461
 "$ref": 1462
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1463
schema.json#/definitions/ins" 1464
 }, 1465
 "p": { 1466
 "$ref": 1467

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 46

"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1468
schema.json#/definitions/p" 1469
 }, 1470
 "rel": { 1471
 "$ref": 1472
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1473
schema.json#/definitions/rel_array" 1474
 }, 1475
 "title": { 1476
 "$ref": 1477
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1478
schema.json#/definitions/title" 1479
 }, 1480
 "type": { 1481
 "$ref": 1482
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-1483
schema.json#/definitions/type" 1484
 } 1485
 }, 1486
 "required": [1487
 "href", 1488
 "rt", 1489
 "if" 1490
], 1491
 "type": "object" 1492
 }, 1493
 "AllJoynObject" : { 1494
 "type": "object", 1495
 "properties": { 1496
 "links" : { 1497
 "$ref": "#/definitions/AllJoynObject-ll" 1498
 }, 1499
 "id": { 1500
 "description": "Instance ID of this specific resource", 1501
 "maxLength": 64, 1502
 "readOnly": true, 1503
 "type": "string" 1504
 }, 1505
 "if": { 1506
 "description": "The interface set supported by this resource", 1507
 "items": { 1508
 "enum": [1509
 "oic.if.baseline", 1510
 "oic.if.ll" 1511
], 1512
 "type": "string" 1513
 }, 1514
 "minItems": 1, 1515
 "readOnly": true, 1516
 "type": "array" 1517
 }, 1518
 "n": { 1519
 "description": "Friendly name of the resource", 1520
 "maxLength": 64, 1521
 "readOnly": true, 1522
 "type": "string" 1523
 }, 1524
 "rt": { 1525
 "items": { 1526
 "enum": [1527
 "oic.r.alljoynobject", 1528
 "oic.wk.col" 1529
] 1530
 }, 1531
 "maxItems": 2, 1532
 "minItems": 2, 1533
 "type": "array", 1534
 "uniqueItems": true 1535
 } 1536
 } 1537

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 47

 } 1538
 } 1539
} 1540
 1541

8.2.5 Property definition 1542

Table 35 defines the Properties that are part of the ['oic.r.alljoynobject', 'oic.wk.col'] Resource Type 1543

Table 35 – The Property definitions of the Resource with type 'rt' = ['oic.r.alljoynobject', 1544
'oic.wk.col'] 1545

Property name Value type Mandatory Access mode Description
id string Read Only Instance ID of

this specific
resource

links multiple types:
see schema

 Read Write

if array: see
schema

 Read Only The interface set
supported by this
resource

rt array: see
schema

 Read Write

n string Read Only Friendly name of
the resource

rel multiple types:
see schema

No Read Write

p multiple types:
see schema

No Read Write

eps multiple types:
see schema

No Read Write

href multiple types:
see schema

Yes Read Write

type multiple types:
see schema

No Read Write

di multiple types:
see schema

No Read Write

ins multiple types:
see schema

No Read Write

title multiple types:
see schema

No Read Write

anchor multiple types:
see schema

No Read Write

8.2.6 CRUDN behaviour 1546

Table 36 defines the CRUDN operations that are supported on the ['oic.r.alljoynobject', 'oic.wk.col'] 1547
Resource Type 1548

Table 36 – The CRUDN operations of the Resource with type 'rt' = ['oic.r.alljoynobject', 1549
'oic.wk.col'] 1550

Create Read Update Delete Notify
 get observe

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 48

8.3 Secure Mode 1551

8.3.1 Introduction 1552

This resource describes a secure mode on/off feature (on/off). 1553
A secureMode value of 'true' means that the feature is on, and any Bridged Server that cannot be 1554
communicated with securely shall not have a corresponding Virtual OCF Server, and any Bridged 1555
Client that cannot be communicated with securely shall not have a corresponding Virtual OCF 1556
Client. 1557
A secureMode value of 'false' means that the feature is off, any Bridged Server can have a 1558
corresponding Virtual OCF Server, and any Bridged Client can have a corresponding Virtual OCF 1559
Client. 1560

8.3.2 Example URI 1561

/example/SecureModeResURI 1562

8.3.3 Resource type 1563

The resource type (rt) is defined as: ['oic.r.securemode']. 1564

8.3.4 OpenAPI 2.0 definition 1565

{ 1566
 "swagger": "2.0", 1567
 "info": { 1568
 "title": "OCFSecureMode", 1569
 "version": "v1.0.0-20170531", 1570
 "license": { 1571
 "name": "copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved.", 1572
 "x-description": "Redistribution and use in source and binary forms, with or without modification, 1573
are permitted provided that the following conditions are met:\n 1. Redistributions of source 1574
code must retain the above copyright notice, this list of conditions and the following disclaimer.\n 1575
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions 1576
and the following disclaimer in the documentation and/or other materials provided with the 1577
distribution.\n\n THIS SOFTWARE IS PROVIDED BY THE Open Connectivity Foundation, INC. \"AS 1578
IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 1579
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES OF NON-INFRINGEMENT, ARE 1580
DISCLAIMED.\n IN NO EVENT SHALL THE Open Connectivity Foundation, INC. OR CONTRIBUTORS BE 1581
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 1582
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 1583
BUSINESS INTERRUPTION)\n HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 1584
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 1585
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n" 1586
 } 1587
 }, 1588
 "schemes": ["http"], 1589
 "consumes": ["application/json"], 1590
 "produces": ["application/json"], 1591
 "paths": { 1592
 "/example/SecureModeResURI" : { 1593
 "get": { 1594
 "description": "This resource describes a secure mode on/off feature (on/off).\nA secureMode 1595
value of 'true' means that the feature is on, and any Bridged Server that cannot be communicated with 1596
securely shall not have a corresponding Virtual OCF Server, and any Bridged Client that cannot be 1597
communicated with securely shall not have a corresponding Virtual OCF Client.\nA secureMode value of 1598
'false' means that the feature is off, any Bridged Server can have a corresponding Virtual OCF Server, 1599
and any Bridged Client can have a corresponding Virtual OCF Client.\nRetrieves the value of 1600
secureMode.\n", 1601
 "parameters": [1602
 {"$ref": "#/parameters/interface"} 1603
], 1604
 "responses": { 1605
 "200": { 1606
 "description" : "", 1607
 "x-example": 1608
 { 1609
 "rt": ["oic.r.securemode"], 1610
 "id": "unique_example_id", 1611

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 49

 "secureMode": false 1612
 }, 1613
 "schema": { "$ref": "#/definitions/SecureMode" } 1614
 } 1615
 } 1616
 }, 1617
 "post": { 1618
 "description": "Updates the value of secureMode.\n", 1619
 "parameters": [1620
 {"$ref": "#/parameters/interface"}, 1621
 { 1622
 "name": "body", 1623
 "in": "body", 1624
 "required": true, 1625
 "schema": { "$ref": "#/definitions/SecureMode" }, 1626
 "x-example": 1627
 { 1628
 "secureMode": true 1629
 } 1630
 } 1631
], 1632
 "responses": { 1633
 "200": { 1634
 "description" : "", 1635
 "x-example": 1636
 { 1637
 "secureMode": true 1638
 }, 1639
 "schema": { "$ref": "#/definitions/SecureMode-Update" } 1640
 } 1641
 } 1642
 } 1643
 } 1644
 }, 1645
 "parameters": { 1646
 "interface" : { 1647
 "in" : "query", 1648
 "name" : "if", 1649
 "type" : "string", 1650
 "enum" : ["oic.if.rw", "oic.if.baseline"] 1651
 } 1652
 }, 1653
 "definitions": { 1654
 "SecureMode" : { 1655
 "properties": { 1656
 "id": { 1657
 "description": "Instance ID of this specific resource", 1658
 "maxLength": 64, 1659
 "readOnly": true, 1660
 "type": "string" 1661
 }, 1662
 "if": { 1663
 "description": "The interface set supported by this resource", 1664
 "items": { 1665
 "enum": [1666
 "oic.if.baseline", 1667
 "oic.if.ll", 1668
 "oic.if.b", 1669
 "oic.if.lb", 1670
 "oic.if.rw", 1671
 "oic.if.r", 1672
 "oic.if.a", 1673
 "oic.if.s" 1674
], 1675
 "type": "string" 1676
 }, 1677
 "minItems": 1, 1678
 "readOnly": true, 1679
 "type": "array" 1680
 }, 1681

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 50

 "n": { 1682
 "description": "Friendly name of the resource", 1683
 "maxLength": 64, 1684
 "readOnly": true, 1685
 "type": "string" 1686
 }, 1687
 "rt": { 1688
 "description": "Resource Type", 1689
 "items": { 1690
 "maxLength": 64, 1691
 "type": "string" 1692
 }, 1693
 "minItems": 1, 1694
 "readOnly": true, 1695
 "type": "array" 1696
 }, 1697
 "secureMode": { 1698
 "description": "Status of the Secure Mode", 1699
 "type": "boolean" 1700
 } 1701
 }, 1702
 "required": [1703
 "secureMode" 1704
], 1705
 "type": "object" 1706
 }, 1707
 "SecureMode-Update" : { 1708
 "properties": { 1709
 "secureMode": { 1710
 "description": "Status of the Secure Mode", 1711
 "type": "boolean" 1712
 } 1713
 }, 1714
 "required": [1715
 "secureMode" 1716
] 1717
 } 1718
 } 1719
} 1720
 1721

8.3.5 Property definition 1722

Table 37 defines the Properties that are part of the ['oic.r.securemode'] Resource Type 1723

Table 37 – The Property definitions of the Resource with type 'rt' = ['oic.r.securemode'] 1724

Property name Value type Mandatory Access mode Description
secureMode boolean Yes Read Write Status of the

Secure Mode
id string No Read Only Instance ID of

this specific
resource

if array: see
schema

No Read Only The interface set
supported by this
resource

rt array: see
schema

No Read Only Resource Type

n string No Read Only Friendly name of
the resource

8.3.6 CRUDN behaviour 1725

Table 38 defines the CRUDN operations that are supported on the ['oic.r.securemode'] Resource 1726
Type 1727

Copyright Open Connectivity Foundation, Inc. © 2017-2019. All rights Reserved 51

Table 38 – The CRUDN operations of the Resource with type 'rt' = ['oic.r.securemode'] 1728

Create Read Update Delete Notify
 get post observe

 1729

	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Document conventions and organization
	4.1 Conventions
	4.2 Notation

	5 OCF Bridge device
	5.1 Introduction
	5.2 Symmetric vs. asymmetric bridging
	5.3 General requirements
	5.4 Resource discovery
	5.5 “Deep translation” vs. “on-the-fly”
	5.6 Use of introspection
	5.7 Stability and loss of data
	5.8 Security
	5.8.1 General Security Requirements
	5.8.2 Blocking communication of Bridged Devices with the OCF ecosystem

	6 AllJoyn translation
	6.1 Operational scenarios
	6.2 Requirements specific to an AllJoyn translator
	6.2.1 Introduction
	6.2.2 Exposing AllJoyn producer devices to OCF clients
	6.2.2.1 Virtual OCF Devices and Resources
	6.2.2.2 Exposing an AllJoyn producer application as a Virtual OCF Server

	6.2.3 Exposing OCF resources to AllJoyn consumer applications
	6.2.3.1 Use of AllJoyn Producer Application
	6.2.3.2 Exposing an OCF server as a Virtual AllJoyn Producer

	6.3 On-the-Fly Translation from D-Bus and OCF payloads
	6.3.1 Introduction
	6.3.2 Translation without aid of introspection
	6.3.2.1 Introduction
	6.3.2.2 Booleans
	6.3.2.3 Numeric types
	6.3.2.4 Text strings
	6.3.2.5 Byte arrays
	6.3.2.6 D-Bus variants
	6.3.2.7 D-Bus object paths and signatures
	6.3.2.8 D-Bus structures
	6.3.2.9 Arrays
	6.3.2.10 Dictionaries / Objects
	6.3.2.11 Non-translatable types
	6.3.2.12 Examples

	6.3.3 Translation with aid of introspection
	6.3.3.1 Introduction to Introspection Metadata
	6.3.3.2 Translation of the introspection itself
	6.3.3.3 Variability of introspection data
	6.3.3.4 Numeric types
	6.3.3.5 Text string and byte arrays
	6.3.3.6 D-Bus Variants
	6.3.3.7 D-Bus Object Paths and Signatures
	6.3.3.8 D-Bus structures
	6.3.3.9 Arrays and dictionaries
	6.3.3.10 Other JSON format attribute values
	6.3.3.11 Examples

	7 Device type definitions
	8 Resource type definitions
	8.1 List of resource types
	8.2 AllJoyn Object
	8.2.1 Introduction
	8.2.2 Example URI
	8.2.3 Resource type
	8.2.4 OpenAPI 2.0 definition
	8.2.5 Property definition
	8.2.6 CRUDN behaviour

	8.3 Secure Mode
	8.3.1 Introduction
	8.3.2 Example URI
	8.3.3 Resource type
	8.3.4 OpenAPI 2.0 definition
	8.3.5 Property definition
	8.3.6 CRUDN behaviour

